Supplementary information

A highly selective fluorescent probe for real-time imaging of bacterial NAT2 and high-thought screening natural inhibitors to therapy tuberculosis

Yinzhu Jin,#a b Zhenhao Tian,#c Xiangge Tian,#a Lei Feng,*a b Jingnan Cui,c and Xiaochi Ma,*a

a College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
b Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China;
c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

These authors equally contributed to this work.
* Corresponding author: Xiaochi Ma and Lei Feng

E-mail: maxc1978@163.com (Xiaochi Ma); leifeng@mail.dlut.edu.cn (Lei Feng);
Tel: +86-411-86110419
Table of Contents

Synthesis and structural characterization of NRHB and ARHB.................S3-S4
HPLC chromatograms of ARHB upon addition of NAT2
.................................S5
The mass spectrum of NA-ARHB product of ARHB by NAT2
.................................S5
The linear relationship between fluorescence intensity and time..................S5
Fluorescence background of different bacterial strainsS6
The structure of 16 natural compounds..S7
Figure S1. Synthesis of ARHB.

Figure S2. 1H NMR spectrum of NRHB in CDCl$_3$.

Figure S3. 13C NMR spectrum of NRHB in CDCl$_3$.
Figure S4. HRMS of NRHB.

Figure S5. 1H NMR spectrum of ARHB in MeOD.

Figure S6. 13C NMR spectrum of ARHB in MeOD.
Figure S7. HRMS of ARHB.

Figure S8. Representative HPLC chromatograms of ARHB (50 μM) incubation with NAT2 at 37 °C, UV detector was set at 580 nm.

Figure S9. The mass spectrum of NA-ARHB as a reaction product of ARHB by NAT2.

Figure S10. The linear relationship between fluorescence intensity and time (0 - 20 min). $\lambda_{ex} = 530$ nm.
Figure S11. Fluorescence background of different bacterial strains. (A, D, G, J) Fluorescence fields; (B, E, H, K) Bright fields; (C, F, I, L) the merge of fluorescence and bright fields.
Figure S12. The structure of 16 natural compounds.