Supporting Information

Triazine based polyimide framework derived Ndoped porous carbons: a study of their capacitive behaviour in aqueous acidic electrolyte

Namrata Deka,^{a.} Rajesh Patidar,^b S. Kasthuri, ^c N. Venkatramaiah ^{c*} and Gitish K. Dutta ^{a*}

- [a] Department of Chemistry, National Institute of Technology Meghalaya, Bijni complex, Laitumkhrah, Shillong-793003, Meghalaya, India
- [b] Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat, India
- [c] Department of Chemistry, SRM Institute of Science and Technology (SRMIST), Chennai-603203, Tamil Nadu, India

Scheme S1 Synthesis of TPI based porous organic frameworks, TPI-P and TPI-N.

Fig. S1 a) FT-IR spectra of TPI-P/TPI-N frameworks; b) ¹³C CP-MAS NMR spectra of TPI-P/TPI-N frameworks.

Fig. S2 CV and GCD curves of TPI-P-700 using different equivalents of $ZnCl_2$ in three electrode system.

Table S1 Electrochemical performance of N-doped porous carbon synthesized by using different amounts of $ZnCl_2$

Precursor	ZnCl ₂ equivalent	$\frac{S_{BET}}{(m^2 g^{-1})}$	Temperature (°C)	C _s (F g ⁻¹) ^a	Electrolyte	Potential Range (V)
TPI-P	3	448	700	150	$1 \text{ M H}_2\text{SO}_4$	-0.2 to 0.8
TPI-P	5	972	700	200	$1 \text{ M H}_2\text{SO}_4$	-0.2 to 0.8
TPI-P	7	1650	700	423	$1 \text{ M H}_2 \text{SO}_4$	-0.2 to 0.8
TPI-P	10	1226	700	320	$1 \text{ M H}_2\text{SO}_4$	-0.2 to 0.8

[a] calculated from GCD curves in three electrode system.

Fig. S3 Water contact angle images of a) TPI-P carbonized without ZnCl₂; b) TPI-N-700; c) TPI-P-700.

Fig. S4 FE-SEM images of a) TPI-P framework; b) TPI-N framework; c) TPI-P carbonized without ZnCl₂; d) TPI-P-700.

Fig. S5 a) FE-SEM image of TPI-P-700 and representative elemental mapping of b) carbon (purple); c) nitrogen (light pink); d) oxygen (green) elements.

Fig. S6 FE-SEM images of (a, b) TPI-P-600; (c, d) TPI-N-600; (e, f) TPI-N-700.

Fig. S7 DFT optimized geometry of TPI-P and TPI-N structural unit using B3LYP/6-31G with Gaussian 09 package.

Fig. S8 EDX spectra of TPI-P-700. Standard peaks for Si and Au were observed due to Si substrate and gold coating respectively.

Fig. S9 Powder X-ray diffraction patterns of TPI-P-X/TPI-N-X.

Fig. S10 Raman spectra of TPI-P precursor carbonized without $ZnCl_2$ and TPI-P-700.

Fig. S11 Deconvoluted C1s and N1s spectra of (a, b) TPI-P-600; (c, d) TPI-N-600 and (e, f) TPI-N-700.

Fig. S12 Nyquist plots of N-doped porous carbon materials.

Fig. S13 a) CV curve of blank graphite sheet at 100 mV s⁻¹ and b) GCD curve of graphite sheet and TPI-P-700 at 1 mA cm⁻² in 1 M H_2SO_4 electrolyte (three electrode systems).

Fig. S14 CV curves of TPI-P-700 at higher rates in three electrode system.

Fig. S15 Ragone plot of TPI-P-700 based symmetric supercapacitor.

Active MaterialElectrolyteSpecificCurrentRefCapacitancedensity / Scan($F g^{-1}$)rate	erence
Polypyrrole derived 3D 6 M KOH 318.2 0.5 A g^{-1}	
hierarchical porous carbon	
Bagasse derived porous carbon 6 M KOH 268.4 2.0 mV s ⁻¹ ²	
aerogel	
Lispin derived neuronana 1 M H SO 010 05 April 3	
Lignin derived nanoporous $1 \text{ M H}_2\text{SO}_4$ 91.0 0.5 A g^{-1}	
carbon	
Nanocellulose derived porous 6 M KOH 302.0 0.5 A g ⁻¹ 4	
carbon aerogel	
2D porous carbon nanosheet 6 M KOH 216.0 0.2 A g^{-1} 5	
N-doped porous carbon cansules 1 M H-SO $240.0 \text{ O} 1 \text{ A} \text{ g}^{-1}$	
$\frac{1}{10000000000000000000000000000000000$	
Biomass derived 3D hierarchical 6 M KOH 356.0 1.0 A g ⁻¹	
porous carbon	
Chitosan/PEG blend derived N- $1 \text{ M H}_2\text{SO}_4$ 356.0 1.0 A g^{-1} 8	
doped porous carbon	
Graphene like porous carbon 6 M KOH 294.0 1.0 A g^{-1} 9	
nanoshoats	
N-doped microporous carbon $ 1 \text{ M H}_2\text{SO}_4 3/3.0 0.2 \text{ A g}^{-1} ^{10}$	
nanosphere	
Heteroatom-doped porous 6 M KOH 416.0 0.5 A g^{-1} ¹¹	
carbon	
Lignin derived activated carbon 6 MKOH 344.0 10.0 mV c ⁻¹ 12	
Lightin derived activated carboni 0 ivi KOTI 544.0 10.0 m v S	
fibers	
Cellulose derived grapheme like $ 6 \text{ M KOH} 353.0 $ $ 1.0 \text{ A g}^{-1} ^{13}$	
porous carbon sheet	
TPI framework derived $1 \text{ M H}_2\text{SO}_4$ 423.0 1.0 A g^{-1} This	s work
heteroatom doned porous carbon	

Table S2 Comparative table of specific capacitance of porous carbon obtained from variousmetal-free precursors.

References

- 1. L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, *Energy Environ. Sci.*, 2013, 6, 2497-2504.
- 2. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong and A. Umar, *Nanoscale*, 2014, **6**, 12120-12129.
- 3. J.-W. Jeon, L. Zhang, J. L. Lutkenhaus, D. D. Laskar, J. P. Lemmon, D. Choi, M. I. Nandasiri, A. Hashmi, J. Xu, R. K. Motkuri, C. A. Fernandez, J. Liu, M. P. Tucker, P. B. McGrail, B. Yang and S. K. Nune, *ChemSusChem*, 2015, **8**, 428-432.
- 4. G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang and X. Yao, *Carbon*, 2016, **99**, 203-211.
- 5. K. Yuan, T. Hu, Y. Xu, R. Graf, G. Brunklaus, M. Forster, Y. Chen and U. Scherf, *ChemElectroChem*, 2016, **3**, 822-828.
- 6. G. A. Ferrero, A. B. Fuertes and M. Sevilla, J. Mater. Chem. A, 2015, **3**, 2914-2923.
- 7. S. Song, F. Ma, G. Wu, D. Ma, W. Geng and J. Wan, J. Mater. Chem. A, 2015, 3, 18154-18162.
- 8. Y. Ba, W. Pan, S. Pi, Y. Zhao and L. Mi, *RSC Adv.*, 2018, **8**, 7072-7079.
- 9. B. Liu, M. Yang, H. Chen, Y. Liu, D. Yang and H. Li, J. Power Sources, 2018, 397, 1-10.

- 10. C. Kim, K. Kim and J. H. Moon, Sci. Rep., 2017, 7, 14400.
- 11. T. Wei, Q. Zhang, X. Wei, Y. Gao and H. Li, *Sci. Rep.*, 2016, **6**, 22646.
- 12. S. Hu, S. Zhang, N. Pan and Y.-L. Hsieh, J. Power Sources, 2014, 270, 106-112.
- 13. R.-J. Mo, Y. Zhao, M.-M. Zhao, M. Wu, C. Wang, J.-P. Li, S. Kuga and Y. Huang, *Chem. Eng. J.*, 2018, **346**, 104-112.