A Concise Synthesis of Indene-based Polycyclic Compounds via FeCl₃-Catalyzed Cascade Cyclization

Xiang Su⁵, Panpan Wu⁶, Wenfeng Liu⁶, and Chao Chen*⁵,⁶

⁵ Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
⁶ School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, 529000, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529000, China
I. General Information

All air or moisture sensitive reactions were conducted in oven-dried glassware under nitrogen atmosphere using dry solvents. Flash column chromatography was performed over silica gel (200-400 mesh) purchased from Ocean Chemical Factory of Qingdao, China. FeCl$_3$ was purchased from Alfa Aesar (98% purity) and used as supplied. All of solvents were dried with activated molecule sieve, and CHCl$_3$ was purified with H$_2$SO$_4$(c) and freshly distilled over CaH$_2$ to remove H$_2$O and ethanol before use. 1H and 13C NMR spectra were collected on a JEOL AL-300MHz, AL-400MHz or AL-600MHz spectrometer with residue solvent peaks as an internal standard (1H NMR: CDCl$_3$ at 7.26 ppm, 13C NMR: CDCl$_3$ at 77.16 ppm). Mass spectra were collected on GCMS-QP2010 SE.
II. Synthesis of Propargylic Alcohols

Propargylic alcohols 1a were purchased from commercial suppliers. Propargylic alcohols 1b-1f, 1h-1k were prepared following the Method A. \[1\] Propargylic alcohol 1g and 1l were prepared following the Method B\[2\] and Method C\[3\].

Method A:
To a solution of alkyne (8 mmol, 1.0 eq.) in THF was added LDA (2.0 M in THF, 1.5 equiv.) at -78 °C. The resulting solution was allowed to warm to room temperature and stirred for a further 1 h. Then corresponding ketones were slowly added at -78 °C. The resulting reaction mixture was warmed up to room temperature and stirred for a further 12 h. On completion, the reaction mixture was quenched by addition of saturated NH\(_4\)Cl and extracted with ethyl acetate. The combined organic layers were dried over Mg\(_2\)SO\(_4\), concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: n-hexane: ethyl acetate = 10: 1) to give the titled compounds.

Spectra datas of alkynes 1b-1e, 1h-1k are consistent with the literatures.\[1,4\]

![Chemical structure of 6-methoxy-1,1-diphenylhex-2-yn-1-ol (1f)]

6-methoxy-1,1-diphenylhex-2-yn-1-ol (1f): white solid, 65% yield.

1H NMR (400 MHz, CHLOROFORM-D) \(\delta\) 7.63 – 7.56 (m, 4H), 7.33 – 7.26 (m, 4H), 7.25 – 7.20 (m, 2H), 3.45 (t, \(J = 6.2\) Hz, 2H), 3.29 (s, 3H), 2.41 (t, \(J = 7.1\) Hz, 2H), 1.82 (p, \(J = 6.7\) Hz, 2H).

13C NMR (101 MHz, CHLOROFORM-D) \(\delta\) 145.66, 128.23 (CH×4), 127.57 (CH×2), 126.10 (CH×4), 87.46, 83.62, 74.47, 71.33, 58.71, 28.65, 15.82.

Method B:
In a sealable tube Pd(OAc)\(_2\) (28 mg, 0.125 mmol) and PPh\(_3\) (65.6 mg, 0.25 mmol) are dissolving anhydrous CH\(_3\)CN (3.75 mL). The yellow suspension is stirred at r.t. under N\(_2\) atmosphere until the solution becomes dark red (usually in less than 2h). This color change indicates that the formation of the catalyst is completed. Then, finely ground K\(_3\)PO\(_4\) (1.0 g, 5.0 mmol), Et\(_3\)N (12.5 mmol), 1,1-diphenylprop-2-yn-1-ol (1.0 g, 5.0 mmol) and 2-bromothiophene (897 mg, 5.5 mmol) were added. The reaction can be heated at 100 °C for 12 h. On completion, the reaction mixture was quenched by saturated NH\(_4\)Cl solution and extracted with ethyl acetate. The combined organic layers were dried over Mg\(_2\)SO\(_4\),
concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: n-hexane: ethyl acetate = 20:1) to give the compound 1g[2].

![Image of 1,1-diphenyl-3-(thiophen-2-yl)prop-2-yn-1-ol (1g)]

1,1-diphenyl-3-(thiophen-2-yl)prop-2-yn-1-ol (1g): yellow liquid, 62% yield.

\[
\begin{align*}
\text{Ph} & \quad \equiv \quad \text{Ph} \\
\text{S} & \quad \text{OH}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta\) 7.68 - 7.62 (m, 3H), 7.41 - 7.33 (m, 5H), 7.31 - 7.27 (m, 3H), 7.00 (dd, \(J = 8.4, 4.4\) Hz, 1H), 2.95 (s, 1H).

\(^{13}\)C NMR (101 MHz, CHLOROFORM-D) \(\delta\) 165.31, 144.80, 132.71, 128.46, 128.16, 127.93, 127.72, 127.14, 126.17, 122.32, 95.46, 80.68, 75.12.

Method C:

A sealed tube charged with PdCl\(_2\) (44 mg, 0.25 mmol), triphenylphosphine (131 mg, 0.5 mmol) and copper(I) iodide (100 mg, 0.5 mmol) in 3 mL of dry DMF was barbotated with \(\text{N}_2\) for 15 min at 40 °C. Then solution of 2-bromopyridine (790 mg, 5 mmol) and 1,1-diphenylprop-2-yn-1-ol (1.35 g, 6.5 mmol) in dry DMF (5 mL) and diisopropylamine (3 mL) was added to the reaction mixture. After 12 h of heating at 80 °C to the reaction mixture was added ethyl acetate (20 mL) and saturated NH\(_4\)Cl solution (10 mL). The organic layers was washed with water (20 mL×3) and dried over Mg\(_2\)SO\(_4\), concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: n-hexane:ethyl acetate:DCM:Et\(_3\)N= 50:20:20:1) to give the desired product 1l[3].

![Image of 1,1-diphenyl-3-(pyridin-2-yl)prop-2-yn-1-ol (1l)]

1,1-diphenyl-3-(pyridin-2-yl)prop-2-yn-1-ol (1l): white solid, 60% yield.

\[^1\text{H}\text{ NMR (400 MHz, CHLOROFORM-D)} \delta 8.42 \text{ (s, 1H), 7.70 (d, } J = 7.4 \text{ Hz, 4H), 7.58 (t, } J = 6.4 \text{ Hz, 1H), 7.40 (d, } J = 6.6 \text{ Hz, 1H), 7.34 – 7.24 \text{ (m, 6H), 7.17 (d, } J = 4.9 \text{ Hz, 1H).} \]

\(^{13}\text{C NMR (101 MHz, CHLOROFORM-D)} \delta 149.93, 144.87, 142.81, 136.36, 128.41, 127.83, 127.47, 126.34, 123.24, 92.22, 86.18, 74.68.
III. Synthesis of Alkene Substrates

Alkenes 2a-2c, 2f-2h, 2j, 2l-2m were purchased from commercial suppliers. Alkenes 2d-2e, 2k were known compounds and prepared according to the literature procedures. Alkene 2i was synthesized with the following procedures.

\[
\text{OTs} + \text{TMS} \xrightarrow{\text{CuCl 5 mol\%}} \text{TMS}
\]

A solution of ((trimethylsilyl)methyl)magnesium chloride (6 mmol) was added to a 10 mL of THF solution containing CuCl (24.7 mg, 0.25 mmol) and 3-methylbut-3-en-1-yl 4-methylbenzenesulfonate (5 mmol, 1.2 g) under N\textsubscript{2} atmosphere. The reaction mixture was stirred at room temperature for 3 h and then quenched by saturated NH\textsubscript{4}Cl aqueous solution and extracted with ether. The combined organic layers were dried over MgSO\textsubscript{4}, evaporated under a reduced pressure and purified by flash column chromatography on silica gel (eluent: n-hexane) to give the product 2i.

trimethyl(4-methylpent-4-en-1-yl)silane (2i): colorless liquid, 70% yield

\[\text{1H NMR (400 MHz, CHLOROFORM-D) } \delta 4.72 - 4.64 (m, 2H), 2.03 (t, J = 7.4 Hz, 2H), 1.70 (s, 3H), 1.49 - 1.39 (m, 2H), 0.51 - 0.44 (m, 2H), -0.02 (s, 9H).\]

\[\text{13C NMR (101 MHz, CHLOROFORM-D) } \delta 146.27, 110.00, 41.84, 22.43, 22.18, 16.42, -1.52 (CH\textsubscript{3}\times3).\]
IV. Synthesis of the Desired Products

General Procedure:
To an oven-dried 4-mL vial or screw-capped tube was added FeCl₃ (1.6 mg, 0.01 mmol, or otherwise noted), DCE (1 mL), Propargylic alcohols (0.1 mmol) and alkenes (0.12 mmol) sequentially under N₂ atmosphere. The reaction mixture was stirred at 60 °C (or otherwise noted) for 12 h. Upon completion, the reaction mixture was cooled to room temperature, extracted with ether. The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (eluent: hexanes/DCM= 50:1 to 25:1) to give the desired products.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp.(°C)</th>
<th>Yield³</th>
<th>3aa</th>
<th>4aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ᵇ</td>
<td>HOTf</td>
<td>DCE</td>
<td>60</td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>2ᵇ</td>
<td>HNTf₂</td>
<td>DCE</td>
<td>60</td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zn(OTf)₂</td>
<td>DCE</td>
<td>60</td>
<td>35%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>InCl₃</td>
<td>DCE</td>
<td>60</td>
<td>0</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sc(OTf)₃</td>
<td>DCE</td>
<td>60</td>
<td>52%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FeCl₃</td>
<td>DCE</td>
<td>60</td>
<td>90% (80%)⁵</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AgSbF₆</td>
<td>DCE</td>
<td>60</td>
<td>0</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cu(OTf)₂</td>
<td>DCE</td>
<td>60</td>
<td>0</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FeCl₃</td>
<td>CHCl₃</td>
<td>60</td>
<td>80%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>FeCl₃</td>
<td>DCM</td>
<td>60</td>
<td>83%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FeCl₃·6H₂O</td>
<td>DCE</td>
<td>60</td>
<td>66%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AgSbF₆</td>
<td>CHCl₃</td>
<td>60</td>
<td>0</td>
<td>77% (70%)⁶</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AgSbF₆</td>
<td>CHCl₃</td>
<td>25</td>
<td>87%</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

ᵃDetermined by ¹H NMR versus an internal standard
ᵇAmount of acid catalyst: 20 mol%
ᶜIsolated yield
3'-phenyl-2'-(1-phenylvinyl)spiro[cyclohexane-1,1'-indene] (3aa): colorless liquid, 28.9 mg, 80% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4mg, 0.1 mmol) and alkene 2a (14 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.88 (d, $J = 7.4$ Hz, 1H), 7.50 (d, $J = 7.6$ Hz, 2H), 7.46 – 7.41 (m, 2H), 7.38 – 7.22 (m, 9H), 5.79 (s, 1H), 5.12 (s, 1H), 2.03 – 1.91 (m, 2H), 1.85 (d, $J = 13.3$ Hz, 1H), 1.80 – 1.65 (m, 4H), 1.38 – 1.24 (m, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 153.32, 152.09, 143.84, 143.59, 140.49, 139.11, 135.48, 129.26 (CH×2), 128.22 (CH×2), 128.19 (CH×2), 127.62, 127.20, 126.75 (CH×2), 126.54, 124.84, 124.57, 120.92, 118.46, 55.00, 32.95 (CH$_2$×2), 25.32, 22.50 (CH$_2$×2).

GC-MS: m/z calced for C$_{28}$H$_{26}$: 362, found: 362.

10'-methyl-10'-phenyl-10'H-spiro[cyclohexane-1,9'-indenol1,2-a]indene (4aa): white solid, 25.3 mg, 70% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-l-ol 1a (28.4mg, 0.1 mmol) and alkene 2a (14 μL, 0.12 mmol) with AgSbF$_6$ (3.5 mg, 0.01 mmol) in CHCl$_3$ at 60 °C.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.80 – 7.71 (m, 3H), 7.37 (t, $J = 7.4$ Hz, 1H), 7.33 – 7.28 (m, 1H), 7.22 – 7.11 (m, 7H), 7.02 (d, $J = 7.5$ Hz, 1H), 2.13 (td, $J = 12.8$, 4.1 Hz, 1H), 1.94 (s, 3H), 1.82 – 1.68 (m, 3H), 1.54 – 1.46 (m, 1H), 1.35 – 1.23 (m, 2H), 1.14 – 0.98 (m, 2H).

13C NMR (101 MHz, CHLOROFORM-D) δ 170.66, 160.68, 156.94, 142.78, 142.25, 137.69, 137.29, 128.22 (CH×2), 126.84 (CH×2), 126.76, 126.66, 126.48, 125.80, 125.67, 124.45, 122.97, 120.25, 119.94, 54.57, 52.88, 33.59, 32.96, 25.39, 22.81, 22.43, 21.93.

GC-MS: m/z calced for C$_{28}$H$_{26}$: 362, found: 362.
4b-methyl-9,10-diphenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3ab): white solid, 28.2 mg, 81% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.43 – 7.39 (m, 1H), 7.36 – 7.32 (s, 1H), 7.29 – 7.19 (m, 4H), 7.13 – 6.98 (m, 5H), 6.95 – 6.89 (m, 3H), 6.41 – 6.36 (m, 1H), 2.54 - 2.45 (m, 1H), 2.39 – 2.26 (m, 2H), 2.01 (q, $J = 12.0$ Hz, 1H), 1.85 – 1.77 (m, 1H), 1.62 (t, $J = 12.9$ Hz, 1H), 1.53 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 155.15, 151.62, 142.71, 142.08, 140.07, 139.63, 135.48, 131.71, 129.18 (CH×2), 127.69 (CH×2), 127.43 (CH×2), 127.17 (CH×2), 126.96, 126.58, 126.21, 125.52, 121.48, 120.57, 51.66, 42.57, 30.33, 25.19, 20.94.
GC-MS: m/z calced for C27H24: 348, found: 348.

(Z)-4b-methyl-10,11-diphenyl-4b,6,7,8-tetrahydro-5H-cycloocta[a]indene (3ac): white solid, 27.5 mg, 76% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2c (14 μL, 0.12 mmol) with AgSbF$_6$ (3.5 mg, 0.01 mmol) in CHCl$_3$ at 60 °C.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.58 (d, $J = 8.0$ Hz, 2H), 7.47 (d, $J = 7.5$ Hz, 1H), 7.41 – 7.26 (m, 8H), 7.22 – 7.13 (m, 3H), 6.46 (t, $J = 7.3$ Hz, 1H), 2.35 – 2.18 (m, 2H), 2.12 – 2.04 (m, 1H), 2.00 – 1.91 (m, 1H), 1.76 – 1.67 (m, 1H), 1.62 – 1.54 (m, 1H), 1.49 – 1.42 (m, 1H), 1.11 – 0.98 (m, 4H).

13C NMR (101 MHz, CHLOROFORM-D) δ 153.06, 150.21, 143.41, 140.20, 138.00, 137.01, 135.61, 129.97, 128.37 (CH×4), 128.16 (CH×2), 127.32, 126.84, 126.62, 126.13 (CH×2), 125.26, 121.55, 120.61, 56.45, 37.28, 28.69, 28.00, 25.37, 23.51.
GC-MS: m/z calced for C28H26: 362, found: 362.

(Z)-4b-methyl-11,12-diphenyl-4b,5,6,7,8,9-hexahydrocyclonona[a]indene (3ad): white solid, 28.2 mg, 75% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2d (13.2 μL, 0.12 mmol) in CHCl$_3$ at 60 °C.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.47 (d, $J = 8.0$ Hz, 2H), 7.44 (d, $J = 7.5$ Hz, 1H), 7.41 – 7.26 (m, 8H), 7.22 – 7.13 (m, 3H), 6.46 (t, $J = 7.3$ Hz, 1H), 2.35 – 2.18 (m, 2H), 2.12 – 2.04 (m, 1H), 2.00 – 1.91 (m, 1H), 1.76 – 1.67 (m, 1H), 1.62 – 1.54 (m, 1H), 1.49 – 1.42 (m, 1H), 1.11 – 0.98 (m, 4H).

13C NMR (101 MHz, CHLOROFORM-D) δ 153.06, 150.21, 143.41, 140.20, 138.00, 137.01, 135.61, 129.97, 128.37 (CH×4), 128.16 (CH×2), 127.32, 126.84, 126.62, 126.13 (CH×2), 125.26, 121.55, 120.61, 56.45, 37.28, 28.69, 28.00, 25.37, 23.51.
GC-MS: m/z calced for C28H26: 362, found: 362.
mg, 0.12 mmol) with AgSbF$_6$ (3.5 mg, 0.01 mmol) in CHCl$_3$ at 60 °C.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.61 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.0 Hz, 3H), 7.37 (dd, J = 11.1, 3.8 Hz, 2H), 7.32 – 7.20 (m, 7H), 6.07 (dd, J = 10.7, 6.6 Hz, 1H), 2.26 – 2.16 (m, 1H), 2.08 – 2.00 (m, 1H), 1.86 – 1.73 (m, 2H), 1.64 – 1.56 (m, 1H), 1.49 – 1.40 (m, 2H), 1.38 – 1.29 (m, 1H), 1.23 – 1.14 (m, 1H), 0.92 (s, 3H), 0.71 – 0.61 (m, 1H).

13C NMR (101 MHz, CHLOROFORM-D) δ 152.62, 149.11, 143.65, 141.88, 140.51, 136.47, 135.62, 133.12, 128.39 (CH×4), 128.22 (CH×2), 127.36, 127.06 (CH×2), 127.00, 126.52, 125.35, 121.60, 120.68, 56.09, 35.99, 27.47, 27.16, 25.50, 24.66, 19.05.

GC-MS: m/z calced for C$_{29}$H$_{28}$: 376, found: 376.

(Z)-4b-methyl-12,13-diphenyl-4b,6,7,8,9,10-hexahydro-5H-cyclodeca[a]indene (3ae):
white solid, 27.3 mg, 70% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2e (14.9 mg, 0.12 mmol) with AgSbF$_6$ (3.5 mg, 0.01 mmol) in CHCl$_3$ at 60 °C.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.62 (d, J = 7.0 Hz, 2H), 7.55 (d, J = 7.4 Hz, 2H), 7.45 (d, J = 7.0 Hz, 1H), 7.40 – 7.24 (m, 9H), 5.73 – 5.66 (m, 1H), 2.39 – 2.26 (m, 1H), 1.77 (dt, J = 13.7, 8.9 Hz, 1H), 1.68 – 1.57 (m, 2H), 1.49 – 1.42 (m, 1H), 1.27 (dd, J = 26.5, 13.9 Hz, 4H), 1.10 – 0.99 (m, 1H), 0.93 (s, 3H), 0.73 – 0.61 (m, 1H).

13C NMR (101 MHz, CHLOROFORM-D) δ 152.10, 148.49, 143.50, 142.81, 141.70, 137.30, 135.82, 133.78, 128.40 (CH×2), 128.35 (CH×2), 128.27 (CH×2), 127.65 (CH×2), 127.23, 127.13, 126.38, 125.39, 121.81, 120.61, 55.26, 32.77, 29.48, 28.89, 28.66, 27.99, 22.35, 20.88.

GC-MS: m/z calcd for C$_{30}$H$_{30}$: 390, found: 390.

(Z)-1,1,9b-trimethyl-4,5-diphenyl-1,1a,2,9b,10,10a-hexahydrocyclopropa[6,7]cycloocta[1,2-a]indene (3af): colorless liquid, 28.5 mg, 71% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2d (14 μL, 0.12 mmol) according to the General Procedure.
1H NMR (600 MHz, CHLOROFORM-D) \(\delta \) 7.45 – 7.43 (m, 1H), 7.39 – 7.36 (m, 2H), 7.33 – 7.31 (m, 1H), 7.29 – 7.27 (m, 2H), 7.22 (dd, \(J = 10.4, 4.7 \) Hz, 2H), 7.14 (ddd, \(J = 6.8, 4.0, 1.3 \) Hz, 1H), 7.11 – 7.08 (m, 1H), 7.00 – 6.96 (m, 3H), 6.32 (dd, \(J = 6.8, 2.8 \) Hz, 1H), 2.81 (ddd, \(J = 20.1, 6.7, 5.5 \) Hz, 1H), 2.35 – 2.26 (m, 2H), 1.66 (t, \(J = 13.0 \) Hz, 1H), 1.42 (s, 3H), 1.00 (s, 3H), 0.88 (s, 3H), -0.01 (ddd, \(J = 12.6, 8.9, 2.1 \) Hz, 1H).

13C NMR (101 MHz, CHLOROFORM-D) \(\delta \) 152.75, 151.99, 144.23, 143.56, 139.12, 135.96, 135.51, 131.78, 128.90 (CH\(\times 2 \)), 127.92 (CH\(\times 2 \)), 127.49 (CH\(\times 2 \)), 127.11 (CH\(\times 2 \)), 126.88, 126.67, 126.08, 125.17, 121.29, 119.99, 57.42, 34.77, 28.78, 27.28, 24.26, 23.41, 22.97, 17.83, 15.37.

GC-MS: m/z calced for C\(_{31}\)H\(_{30}\): 402, found: 402.

![Image of 3,3-dimethyl-3'-phenyl-2'-(1-phenylvinyl)spiro[cyclohexane-1,1'-indene] (3ag)](image)

3,3-dimethyl-3'-phenyl-2'-(1-phenylvinyl)spiro[cyclohexane-1,1'-indene] (3ag): colorless liquid, 22.6 mg, 58% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2e (15 mg, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) \(\delta \) 7.90 (d, \(J = 7.4 \) Hz, 1H), 7.43 (d, \(J = 7.7 \) Hz, 2H), 7.38 (dd, \(J = 7.0, 1.3 \) Hz, 2H), 7.31 (t, \(J = 7.5 \) Hz, 2H), 7.26 – 7.17 (m, 7H), 5.73 (s, 1H), 5.05 (s, 1H), 2.02 – 1.92 (m, 1H), 1.87 (d, \(J = 14.3 \) Hz, 1H), 1.58 – 1.41 (m, 5H), 1.12 – 1.08 (m, 4H), 0.85 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) \(\delta \) 154.04, 153.07, 144.15, 143.65, 140.90, 139.37, 135.58, 129.27 (CH\(\times 2 \)), 128.22 (CH\(\times 2 \)), 128.16 (CH\(\times 2 \)), 127.61, 127.16, 126.81 (CH\(\times 2 \)), 126.35, 124.93, 124.61, 120.75, 119.40, 56.10, 44.38, 38.76, 35.73, 32.14, 30.86, 28.23, 20.30.

GC-MS: m/z calced for C\(_{30}\)H\(_{30}\): 390, found: 390.

![Image of 1-methyl-3-phenyl-2-(1-phenylvinyl)-1-propyl-1H-indene (3ah)](image)

1-methyl-3-phenyl-2-(1-phenylvinyl)-1-propyl-1H-indene (3ah): colorless liquid, 25.2 mg, 72% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2f (15 \(\mu \)L, 0.12 mmol) according to the General Procedure.
\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta\) 7.50 (d, \(J = 7.6\) Hz, 2H), 7.37 – 7.31 (m, 6H), 7.29 – 7.19 (m, 6H), 5.63 – 5.57 (m, 1H), 5.15 (s, 1H), 1.83 – 1.73 (m, 2H), 1.20 (s, 3H), 1.09 – 0.99 (m, 1H), 0.76 – 0.67 (m, 4H).

\(^1^3\)C NMR (101 MHz, CHLOROFORM-D) \(\delta\) 151.99, 150.54, 144.54, 143.79, 141.26, 140.50, 135.56, 129.23 (CH×2), 128.20 (CH×2), 128.05 (CH×2), 127.50, 127.28 (CH×2), 127.22, 126.50, 125.48, 121.69, 120.72, 118.06, 55.43, 40.70, 25.20, 17.50, 14.36.

GC-MS: m/z calced for C\(_{27}\)H\(_{26}\): 350, found: 350.

trimethyl(3-(1-methyl-3-phenyl-2-(1-phenylvinyl)-1H-inden-1-yl)propyl)silane (3ai): colorless liquid, 26.2 mg, 62% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2g (18.7 mg, 0.12 mmol) according to the General Procedure.

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta\) 7.49 – 7.44 (m, 2H), 7.35 – 7.18 (m, 12H), 5.57 (s, 1H), 5.10 (s, 1H), 1.86 – 1.69 (m, 2H), 1.17 (s, 3H), 1.05 (dtd, \(J = 13.6, 11.3, 5.2\) Hz, 1H), 0.80 – 0.68 (m, 1H), 0.28 – 0.22 (m, 2H), -0.14 (s, 9H).

\(^1^3\)C NMR (101 MHz, CHLOROFORM-D) \(\delta\) 151.95, 150.59, 144.60, 143.73, 141.27, 140.48, 135.63, 129.21 (CH×2), 128.24 (CH×2), 128.08 (CH×2), 127.51, 127.29 (CH×2), 127.21, 126.49, 125.48, 121.70, 120.73, 118.12, 55.57, 42.37, 25.16, 18.49, 17.13, -1.46 (CH×2).

GC-MS: m/z calced for C\(_{30}\)H\(_{34}\)Si: 422, found: 422.

1,1-dimethyl-2-(2-methyl-1-phenylprop-1-en-1-yl)-3-phenyl-1H-indene (3aj): colorless liquid, 30.8 mg, 88% yield.

Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2h (12 µL, 0.12 mmol) according to the General Procedure.

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta\) 7.65 (d, \(J = 7.8\) Hz, 2H), 7.42 (t, \(J = 7.7\) Hz, 3H), 7.38 – 7.21 (m, 9H), 1.69 (s, 3H), 1.40 (s, 3H), 1.31 (s, 3H), 0.74 (s, 3H).

\(^1^3\)C NMR (101 MHz, CHLOROFORM-D) \(\delta\) 154.26, 152.98, 142.49, 141.65, 138.12, 136.38, 134.21, 130.45 (CH×2), 130.21, 128.53 (CH×2), 128.37 (CH×2), 127.85 (CH×2), 127.12, 126.53, 126.45, 125.23, 121.37, 120.66, 51.93, 26.78, 24.49, 23.64, 21.99.
GC-MS: m/z calced for C_{27}H_{26}: 350, found: 350.

Ph^{Ph}(E)-3'-phenyl-2'-(1-phenylprop-1-en-1-yl)spiro[cyclohexane-1,1'-indene] (3ak): white solid, 29.7 mg, 79% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2i (13.2 mg, 0.12 mmol) according to the General Procedure.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.82 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.33 – 7.25 (m, 7H), 7.23 – 7.17 (m, 2H), 5.63 (q, J = 7.0 Hz, 1H), 1.97 – 1.80 (m, 3H), 1.72 (d, J = 7.2 Hz, 3H), 1.67 – 1.58 (m, 4H), 1.25 – 1.15 (m, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 156.27, 151.98, 144.15, 139.61, 138.58, 136.14, 135.79, 129.97, 129.62 (CH×2), 129.52 (CH×2), 128.20 (CH×2), 127.92 (CH×2), 126.99, 126.75, 126.40, 124.85, 124.34, 120.85, 54.93, 32.92 (CH₂×2), 25.43, 22.54 (CH₂×2), 15.38.

GC-MS: m/z calced for C_{29}H_{28}: 376, found: 376.

Ph^{Ph}CH₂Cl

1-(4-chlorophenyl)-3-phenyl-2-(1-phenylvinyl)-1H-indene (3al): colorless liquid, 25.4 mg, 63% yield.
Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2j (14 μL, 0.12 mmol) according to the General Procedure.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.4 Hz, 1H), 7.32 (t, J = 6.3 Hz, 3H), 7.28 – 7.25 (m, 1H), 7.23 – 7.16 (m, 9H), 6.88 (d, J = 8.3 Hz, 2H), 5.33 (s, 1H), 5.00 (s, 1H), 4.83 (s, 1H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 147.76, 147.18, 145.00, 143.73, 142.16, 141.03, 138.17, 134.87, 132.44, 129.91 (CH×2), 129.22 (CH×2), 128.71 (CH×2), 128.31 (CH×2), 128.12 (CH×2), 127.49 (CH×4), 127.26, 126.11, 124.26, 120.95, 118.79, 57.41.

GC-MS: m/z calced for C_{29}H_{21}Cl: 404, found: 404.
3-phenyl-2-(1-phenylvinyl)-1-(p-tolyl)-1H-indene (3am): white solid, 23.8 mg, 62% yield. Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2k (16 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.43 (d, $J = 7.8$ Hz, 2H), 7.37 (d, $J = 7.7$ Hz, 1H), 7.29 (t, $J = 7.4$ Hz, 3H), 7.25 – 7.14 (m, 8H), 7.03 (d, $J = 7.7$ Hz, 2H), 6.87 (d, $J = 7.7$ Hz, 2H), 5.33 (s, 1H), 5.03 (s, 1H), 4.84 (s, 1H), 2.29 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 148.47, 147.63, 144.99, 143.99, 141.73, 141.20, 136.45, 136.22, 135.15, 129.28 (CH×3), 128.41 (CH×2), 128.18 (CH×2), 127.98 (CH×2), 127.55 (CH×2), 127.32 (CH×2), 126.95, 125.94, 124.30, 120.74, 118.58, 57.88, 21.26.

GC-MS: m/z calced for C$_{30}$H$_{24}$: 384, found: 384.

1-(4-(tert-butyl)phenyl)-3-phenyl-2-(1-phenylvinyl)-1H-indene (3an): white solid, 26.0 mg, 61% yield. Synthesized from 1,1,3-triphenylprop-2-yn-1-ol 1a (28.4 mg, 0.1 mmol) and alkene 2l (22 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.39 (d, $J = 7.6$ Hz, 2H), 7.34 (d, $J = 7.4$ Hz, 1H), 7.29 – 7.10 (m, 15H), 6.90 (d, $J = 8.2$ Hz, 2H), 5.32 (s, 1H), 5.04 (s, 1H), 4.84 (s, 1H), 1.26 (s, 9H).

13C NMR (101 MHz, CHLOROFORM-D) δ 149.36, 148.39, 147.64, 144.99, 144.02, 141.67, 141.23, 136.31, 135.21, 129.30 (CH×2), 128.14 (CH×2), 128.06 (CH×2), 127.92 (CH×2), 127.58 (CH×2), 127.27, 127.24, 126.92, 125.86, 125.39 (CH×2), 124.36, 120.72, 118.70, 57.88, 34.52, 31.51 (CH×3).

GC-MS: m/z calced for C$_{33}$H$_{30}$: 426, found: 426.
4b-methyl-10-phenyl-9-(p-tolyl)-4b,5,6,7-tetrahydrobenzo[a]azulene (3bb): white solid, 30.4 mg, 84% yield.
Synthesized from propargylic alcohol 1b (29.8 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.45 – 7.34 (m, 2H), 7.32 – 7.23 (m, 4H), 7.17 – 7.04 (m, 3H), 6.93 (d, $J = 8.1$ Hz, 2H), 6.75 (d, $J = 8.0$ Hz, 2H), 6.41 – 6.36 (m, 1H), 2.54 – 2.44 (m, 1H), 2.38 – 2.27 (m, 2H), 2.15 (s, 3H), 2.06 – 1.95 (m, 1H), 1.86 – 1.77 (m, 1H), 1.68 – 1.59 (m, 1H), 1.52 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 155.16, 151.70, 142.76, 139.78, 139.38, 139.04, 135.76, 135.53, 130.66, 129.12 (CH×2), 128.15 (CH×2), 127.69 (CH×2), 126.93, 126.88 (CH×2), 126.55, 125.44, 121.46, 120.54, 51.69, 42.71, 30.24, 25.16, 21.00, 20.79.
GC-MS: m/z calced for C$_{28}$H$_{26}$: 362, found: 362.

9-(4-bromophenyl)-4b-methyl-10-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3cb): white solid, 33.6 mg, 79% yield.
Synthesized from propargylic alcohol 1c (36.2 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.42 – 7.32 (m, 2H), 7.31 – 7.26 (m, 2H), 7.23 – 7.17 (m, 2H), 7.16 – 7.06 (m, 3H), 7.06 – 7.01 (m, 2H), 6.87 (d, $J = 8.6$ Hz, 2H), 6.37 (dd, $J = 8.4$, 4.3, 1H), 2.49 (dt, $J = 14.9$, 7.5 Hz, 1H), 2.37 – 2.24 (m, 2H), 2.00 (td, $J = 13.7$, 1.8 Hz, 1H), 1.86 – 1.77 (m, 1H), 1.61 (t, $J = 12.9$ Hz, 1H), 1.49 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 155.04, 150.93, 142.47, 141.05, 139.99, 139.05, 135.25, 132.26, 130.47 (CH×2), 129.07 (CH×2), 128.68 (CH×2), 127.87 (CH×2), 127.27, 126.66, 125.71, 121.50, 120.67, 120.04, 51.62, 42.46, 30.31, 25.04, 20.85.
GC-MS: m/z calced for C$_{27}$H$_{23}$Br: 426, found: 426.
9-(4-methoxyphenyl)-4b-methyl-10-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3db): colorless liquid, 24.9 mg, 66% yield. Synthesized from propargylic alcohol 1d (31.4 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) according to the General Procedure.

\[
\begin{align*}
\text{^1H NMR (400 MHz, CHLOROFORM-D)} & \delta 7.43 – 7.32 (m, 2H), 7.31 – 7.21 (m, 4H), 7.16 – 7.09 (m, 2H), 7.08 – 7.02 (m, 1H), 6.98 – 6.91 (m, 2H), 6.51 – 6.45 (m, 2H), 6.31 (dt, J = 7.3, 3.7 Hz, 1H), 3.64 (s, 3H), 2.46 (dd, J = 14.8, 7.2 Hz, 1H), 2.36 – 2.23 (m, 2H), 1.99 (dd, J = 25.0, 12.6 Hz, 1H), 1.85 – 1.75 (m, 1H), 1.60 (t, J = 13.0 Hz, 1H), 1.50 (s, 3H).
\end{align*}
\]

\[
\begin{align*}
\text{^13C NMR (101 MHz, CHLOROFORM-D)} & \delta 158.13, 155.15, 151.84, 142.74, 139.38, 135.51, 134.79, 129.94, 129.09 (CH×2), 128.13 (CH×2), 127.72 (CH×2), 127.00, 126.55, 125.45, 121.46, 120.53, 112.89 (CH×2), 55.27, 51.67, 42.68, 30.20, 25.26, 20.81.
\end{align*}
\]

GC-MS: m/z calced for C_{28}H_{26}O: 378, found: 378.

4b-methyl-10-phenyl-9-propyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3eb): colorless liquid, 21.0 mg, 67% yield. Synthesized from propargylic alcohol 1e (25.0 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) at 25 °C according to the General Procedure.

\[
\begin{align*}
\text{^1H NMR (400 MHz, CHLOROFORM-D)} & \delta 7.45 – 7.19 (m, 9H), 5.88 – 5.80 (m, 1H), 2.23 (dd, J = 12.6, 4.5 Hz, 2H), 2.14 (t, J = 12.7 Hz, 1H), 1.96 – 1.85 (m, 1H), 1.74 – 1.62 (m, 3H), 1.49 (t, J = 13.0 Hz, 1H), 1.33 (s, 3H), 1.22 – 1.02 (m, 2H), 0.62 (t, J = 7.3 Hz, 1H).
\end{align*}
\]

\[
\begin{align*}
\text{^13C NMR (101 MHz, CHLOROFORM-D)} & \delta 154.84, 153.10, 143.06, 139.62, 136.57, 136.39, 129.10, 128.98 (CH×2), 128.39 (CH×2), 127.39, 126.43, 125.08, 121.28, 120.03, 51.57, 42.54, 39.44, 29.76, 25.38, 21.99, 21.19, 14.12.
\end{align*}
\]

GC-MS: m/z calced for C_{24}H_{26}: 314, found: 314.
9-(3-methoxypropyl)-4b-methyl-10-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3fb):
colorless liquid, 19.9 mg, 58% yield.
Synthesized from propargylic alcohol 1f (28.0 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) at 25 °C according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.44 – 7.36 (m, 4H), 7.35 – 7.24 (m, 4H), 7.23 – 7.19 (m, 2H), 5.89 – 5.84 (m, 1H), 3.16 (s, 3H), 3.04 (t, $J = 6.0$ Hz, 2H), 2.26 – 2.08 (m, 3H), 1.94 – 1.84 (m, 1H), 1.79 – 1.62 (m, 4H), 1.51 – 1.41 (m, 2H), 1.32 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 154.81, 152.61, 142.92, 138.87, 136.86, 136.25, 129.61, 128.97 (CH×2), 128.44 (CH×2), 127.51, 126.46, 125.19, 121.30, 120.08, 72.73, 58.42, 51.58, 42.49, 33.43, 29.76, 28.77, 25.31, 21.23.

GC-MS: m/z calced for C$_{25}$H$_{28}$O: 344, found: 344.

2-(4b-methyl-10-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulen-9-yl)thiophene (3gb):
colorless liquid, 20.5 mg, 58% yield

1H NMR (400 MHz, CHLOROFORM-D) δ 7.47 – 7.37 (m, 4H), 7.32 – 7.27 (m, 2H), 7.22 (t, $J = 7.5$ Hz, 2H), 7.15 (t, $J = 7.3$ Hz, 1H), 6.82 (d, $J = 5.0$ Hz, 1H), 6.58 – 6.54 (m, 1H), 6.54 – 6.47 (m, 2H), 2.50 – 2.40 (m, 1H), 2.36 – 2.25 (m, 2H), 2.03 – 1.91 (m, 1H), 1.83 – 1.74 (m, 1H), 1.58 (td, $J = 13.2$, 2.7 Hz, 1H), 1.46 (s, 3H).

13C NMR (101 MHz, CHLOROFORM-D) δ 155.05, 150.65, 145.56, 142.38, 139.55, 135.57, 133.68, 130.28, 128.91 (CH×2), 127.95 (CH×2), 127.25, 126.60, 126.56, 125.71, 124.53, 123.07, 121.51, 120.81, 51.77, 42.50, 29.96, 24.98, 20.40.

GC-MS: m/z calced for C$_{33}$H$_{22}$S: 354, found: 354.

4b,10-dimethyl-9-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3hb): colorless liquid, 20.3
mg, 71% yield.
Synthesized from propargylic alcohol 1g (22.0 mg, 0.1 mmol) and alkene 2b (13 µL, 0.12 mmol) at 25 °C according to the General Procedure.

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta 7.36 – 7.17 \text{ (m, 9H), 6.43 – 6.36 \text{ (m, 1H), 2.41 (dt, } J = 15.0, 7.5 \text{ Hz, 1H), 2.25 (dd, } J = 13.3, 4.9 \text{ Hz, 1H), 2.14 (t, } J = 13.3 \text{ Hz, 1H), 1.91 (dd, } J = 25.8, 12.1 \text{ Hz, 1H), 1.76 – 1.66 \text{ (m, 1H), 1.60 (s, 3H), 1.49 (t, } J = 13.0 \text{ Hz, 1H), 1.40 (s, 3H).}

\(^{13}\)C NMR (101 MHz, CHLOROFORM-D) \(\delta 154.92, 149.50, 144.22, 143.24, 139.29, 134.86, 131.36, 128.32 (\text{CH} \times 2), 126.93 (\text{CH} \times 2), 126.69, 126.52, 125.26, 121.00, 119.08, 51.34, 42.03, 30.28, 24.98, 21.25, 12.28.

GC-MS: m/z calced for C\(_{22}\)H\(_{22}\): 286, found: 286.

3,4b,10-trimethyl-9-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3ib): colorless liquid, 18.0 mg, 60% yield.
Synthesized from propargylic alcohol 1h (23.6 mg, 0.1 mmol) and alkene 2b (13 µL, 0.12 mmol) at 25 °C according to the General Procedure.

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta 7.28 – 7.19 \text{ (m, 5H), 7.16 – 7.13 \text{ (m, 2H), 7.12 – 7.07 \text{ (m, 1H), 6.38 (dd, } J = 8.5, 4.2 \text{ Hz, 1H), 2.43 (s, 3H), 2.38 (dd, } J = 15.9, 7.9 \text{ Hz, 1H), 2.23 (dd, } J = 13.0, 5.7 \text{ Hz, 1H), 2.18 – 2.09 \text{ (m, 1H), 1.95 – 1.84 \text{ (m, 1H), 1.74 – 1.67 \text{ (m, 1H), 1.58 (s, 3H), 1.53 – 1.44 \text{ (m, 1H), 1.39 (s, 3H).}}

\(^{13}\)C NMR (101 MHz, CHLOROFORM-D) \(\delta 155.18, 148.50, 143.35, 141.65, 139.40, 134.97, 134.75, 131.09, 128.28 (\text{CH} \times 2), 127.19, 126.94 (\text{CH} \times 2), 126.64, 121.97, 118.82, 51.13, 42.14, 30.30, 24.95, 21.79, 21.31, 12.33.

GC-MS: m/z calced for C\(_{23}\)H\(_{24}\): 300, found: 300.

3-chloro-4b,10-dimethyl-9-phenyl-4b,5,6,7-tetrahydrobenzo[a]azulene (3jb): colorless liquid, 20.8 mg, 65% yield.
Synthesized from propargylic alcohol 1i (25.6 mg, 0.1 mmol) and alkene 2b (13 µL, 0.12 mmol) at 25 °C according to the General Procedure.

\(^1\)H NMR (400 MHz, CHLOROFORM-D) \(\delta 7.31 – 7.18 \text{ (m, 7H), 7.14 (d, } J = 8.1 \text{ Hz, 1H), 6.39 (dd, } J = 8.4, 4.3 \text{ Hz, 1H), 2.41 (dt, } J = 15.0, 7.5 \text{ Hz, 1H), 2.23 – 2.08 \text{ (m, 2H), 1.95 – } 818
1.83 (m, 1H), 1.74 – 1.65 (m, 1H), 1.56 (s, 3H), 1.52 – 1.44 (m, 1H), 1.39 (s, 3H).

1C NMR (101 MHz, CHLOROFORM-D) δ 156.57, 149.96, 143.00, 142.72, 138.96, 134.20, 131.63, 131.22, 128.38 (CH×2), 126.87 (CH×2), 126.81, 126.63, 121.70, 120.00, 51.61, 41.81, 30.22, 24.81, 21.21, 12.25.

GC-MS: m/z calced for C22H21Cl: 320, found: 320.

4b,10-dimethyl-9-phenyl-3-(trifluoromethyl)-4b,5,6,7-tetrahydrobenzo[a]azulene (3kb): colorless liquid, 21.6 mg, 61% yield.

Synthesized from propargylic alcohol 1j (29.0 mg, 0.1 mmol) and alkene 2b (13 μL, 0.12 mmol) at 25 °C according to the General Procedure.

1H NMR (400 MHz, CHLOROFORM-D) δ 7.54 (d, $J = 7.1$ Hz, 2H), 7.32 – 7.21 (m, 6H), 6.46 – 6.41 (m, 1H), 2.43 (dt, $J = 15.1$, 7.4 Hz, 1H), 2.26 (dd, $J = 13.7$, 5.6 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.92 (dd, $J = 24.1$, 11.9 Hz, 1H), 1.73 – 1.66 (m, 1H), 1.60 (s, 3H), 1.54 – 1.49 (m, 1H), 1.42 (s, 3H).

1C NMR (101 MHz, CHLOROFORM-D) δ 155.10, 152.66, 147.64, 142.80, 138.80, 134.23, 132.09, 128.45, 127.14 (q, $J = 31.8$ Hz), 126.91, 126.84, 125.12 (q, $J = 272.1$ Hz), 124.03 (q, $J = 3.5$ Hz), 119.08, 117.80 (q, $J = 3.6$ Hz), 51.79, 41.69, 30.23, 24.82, 21.13, 12.23.

GC-MS: m/z calced for C23H21F$_3$: 354, found: 354.
V. Product Structure Determination

The structure of products were determined by X-ray diffraction. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC). The structure of other products were assumed by analogy.

Table S1. Crystal data and structure refinement for 3ab (CCDC: 1813668).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell: a=9.7501(8)</td>
<td>b=10.4858(8)</td>
</tr>
<tr>
<td>alpha=109.080(7)</td>
<td>beta=103.390(7)</td>
</tr>
<tr>
<td>Temperature</td>
<td>293 K</td>
</tr>
<tr>
<td>Volume</td>
<td>991.35(15)</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C27 H24</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C27 H24</td>
</tr>
<tr>
<td>Mr</td>
<td>348.46</td>
</tr>
<tr>
<td>Dx, g/cm³</td>
<td>1.167</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>0.493</td>
</tr>
<tr>
<td>F000</td>
<td>372.0</td>
</tr>
<tr>
<td>h, k, l max</td>
<td>11, 12, 13</td>
</tr>
<tr>
<td>Nref</td>
<td>3316</td>
</tr>
<tr>
<td>Tmin, Tmax</td>
<td>0.874, 1.000</td>
</tr>
<tr>
<td>Correction method</td>
<td># Reported T Limits: Tmin=0.874 Tmax=1.000</td>
</tr>
<tr>
<td>Data completeness</td>
<td>0.966</td>
</tr>
<tr>
<td>Theta(max)</td>
<td>65.647</td>
</tr>
<tr>
<td>R(reflections)</td>
<td>0.0516(2686)</td>
</tr>
<tr>
<td>wR2(reflections)</td>
<td>0.1400(3316)</td>
</tr>
<tr>
<td>S</td>
<td>1.035</td>
</tr>
<tr>
<td>Npar</td>
<td>245</td>
</tr>
</tbody>
</table>

Table S2. Crystal data and structure refinement for 3ak (CCDC: 1813666).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell: a=15.1865(15)</td>
<td>b=11.8880(14)</td>
</tr>
<tr>
<td>c=23.645(3)</td>
<td></td>
</tr>
</tbody>
</table>
alpha=90 beta=95.227(10) gamma=90
Temperature 100 K
Volume 4251.0(8)
Space group C2/c
Hall group -C2yc
Moiety formula C29 H28
Sum formula C29 H28
Mr 376.51
Dx,g/cm3 1.177
Z 8
Mu (mm-1) 0.066
F000 1616.0
h,k,lmax 18,14,28
Nref 3732
Tmin,Tmax 0.370,1.000
Correction method= # Reported T Limits: Tmin=0.370 Tmax=1.000
Data completeness= 0.997 Theta(max)= 25.005
R(reflections)= 0.0617(2397) wR2(reflections)= 0.1383(3732)
S = 1.034 Npar= 263
References:
3al

Ph
Ph
CH₂
Cl

Ph

3al
3am