Supporting Information

Copper(II)-Catalyzed Trifluoromethylation of Iodoarenes using Chen Reagent
Shiyu Zhaoa,d, Yong Guoa,d,*, En-Jian Hana, Jun Luob, Hui-Min Liub,*, Chao Liua,d, Weidong Xiec, Wei Zhangc, Mengying Wangc

aKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
bSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. of China
cSanming Hexaflu Chemicals Co., LTD., Fluorinated New Material Industry Park, Mingxi, Fujian 365200, P. R. of China
dUniversity of Chinese Academy of Sciences

Email addresses: yguo@sioc.ac.cn, szliuhm@sit.edu.cn

Table of Contents

1. Supporting Information ...S1
2. General infromation...S2
3. General procedures for trifluoromethylation of iodoarenes.................................S3
4. Application of the reaction..S10
5. Mechanism Studies ...S13
6. References ..S14
7. NMR spectra..S15
2. General information

NMR spectra were obtained on a 400 MHz spectrometer using CDCl$_3$ as deuterated solvents, with proton, carbon and fluorine resonances at 400 MHz, 100 MHz and 376 MHz, respectively. Chemical shifts were reported in parts per million (ppm) relative to TMS as an internal standard ($\delta_{\text{TMS}} = 0$ ppm) for 1H and 13C NMR spectra and CFCl$_3$ as an external standard (negative for upfield) for 19F NMR spectra. DMF was distilled from CaH$_2$. All the other solvents or reagents were used as commercial sources without purification if not noted. All reactions were performed in standard Schlenk tubes and monitored by thin-layer chromatography (TLC), 19F NMR or GC-MS. Flash column chromatography was carried out using 300-400 mesh silica gel.
3. General procedures for trifluoromethylation of iodoarenes

A Schlenk tube was charged with CuCl$_2$ (6.7 mg, 0.05 mmol), FSO$_2$CF$_2$CO$_2$Me (240 mg, 1.25 mmol), aryl iodide (0.5 mmol) and DMF (1.5 mL) under nitrogen. The reaction mixture was warmed stepwise to 110ºC and then the mixture was stirred at 110 ºC for 2 hours. An internal standard (α,\,α,\,α-trifluorotoluene or 4-(trifluoromethoxy)benzotrifluoride) was added into the resulting mixture to calculate the 19F NMR yield. The reaction mixture was added with ethyl acetate (10 mL) or dichloromethane (10 mL) and water (10 mL). After the filterate and washing with water (2 × 10 mL) and brine (2 × 10 mL), the organic phase was dried with anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel with an ethyl acetate/petroleum ether mixture as eluent to afford the desired trifluoromethylated product.

CF_3

1-(trifluoromethyl)naphthalene (3a)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 82% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$): δ 8.19 (d, 1H), 8.02 (d, 1H), 8.02–7.82 (q, 2H), 7.69 – 7.55 (m, 2H), 7.54–7.46 (t, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -59.7 (s).

CF_3

4-(trifluoromethyl)-1,1'-biphenyl (3b)2: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 85% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (s, 4H), 7.61 (d, J = 8.5 Hz, 2H), 7.48 (t, J = 7.9 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ ppm -62.5 (s).
2-(trifluoromethyl)-1,1'-biphenyl (3c): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.25 mmol, 2.5 equiv), and CuCl₂ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 78% yield by silica gel flash column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.44 (m, 3H), 7.41 – 7.37 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.8 (s).

1-tert-Butyl-4-(trifluoromethyl)benzene (3d): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.075 mmol, 0.15 equiv), and the product was obtained as a colorless liquid in 74% yield by silica gel flash column chromatography. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 1.44 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s).

1-(4-(trifluoromethyl)phenyl)ethan-1-one (3e): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.25 mmol, 2.5 equiv), and CuCl₂ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 90% yield by silica gel flash column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 2.63 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -62.9 (s).

Methyl 3-(trifluoromethyl)benzoate (3f): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.25 mmol, 2.5 equiv), and CuCl₂ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 86% yield by silica gel flash
column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 8.31 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 3.96 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ ppm -63.0 (s).

![Methyl 4-(trifluoromethyl)benzoate (3g)](image)

Methyl 4-(trifluoromethyl)benzoate (3g)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 90% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 3.95 (s, 3H).19F NMR (376 MHz, CDCl$_3$) δ -63.4 (s).

![Methyl 2-(trifluoromethyl)benzoate (3h)](image)

Methyl 2-(trifluoromethyl)benzoate (3h)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 89% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (dq, J = 12.7, 3.8 Hz, 2H), 7.59 (d, J = 5.5 Hz, 2H), 3.93 (s, 3H).19F NMR (376 MHz, CDCl$_3$) δ -59.8 (s).

![2-(Trifluoromethyl)benzonitrile (3i)](image)

2-(Trifluoromethyl)benzonitrile (3i)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a yellow liquid in 90% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.85 (d, J = 7.4 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.71 (q, J = 7.4, 6.5 Hz, 1H).19F NMR (376 MHz, CDCl$_3$) δ -62.1 (s).

![4-(Trifluoromethyl)benzonitrile (3j)](image)

4-(Trifluoromethyl)benzonitrile (3j)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the
product was obtained as a colorless liquid in 92% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, $J = 8.7$ Hz, 2H), 7.76 (d, $J = 8.6$ Hz, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -63.6 (s).

![1-Nitro-2-(trifluoromethyl)benzene (3k)](image1)

1-Nitro-2-(trifluoromethyl)benzene (3k)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 82% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.92 – 7.86 (m, 1H), 7.84 (dd, $J = 5.7, 3.6$ Hz, 1H), 7.77 – 7.70 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -60.1 (s).

![1-Nitro-4-(trifluoromethyl)benzene (3l)](image2)

1-Nitro-4-(trifluoromethyl)benzene (3l)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 82% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 8.52 (s, 1H), 8.45 (d, $J = 8.2$ Hz, 1H), 7.99 (d, $J = 7.8$ Hz, 1H), 7.76 (t, $J = 8.0$ Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -63.0 (s).

![1-Nitro-4-(trifluoromethyl)benzene (3m)](image3)

1-Nitro-4-(trifluoromethyl)benzene (3m)1: The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a white solid in 82% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 8.36 (d, $J = 8.6$ Hz, 2H), 7.84 (d, $J = 8.7$ Hz, 2H). 19F NMR(376 MHz, CDCl$_3$) δ -63.1 (s).
1-Chloro-4-(trifluoromethyl)benzene (3o): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.75 mmol, 0.15 equiv). 80% yield was determined by 19F NMR. Crude 19F NMR (unlocked): δ −62.2 (s).

4-(trifluoromethyl)benzaldehyde (3p): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 87% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 10.09 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -63.3 (s).

2-(Trifluoromethyl)acetophenone (3q): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.25 mmol, 2.5 equiv), and CuCl$_2$ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 87% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.68 (d, J = 8.9 Hz, 1H), 7.63 – 7.50 (m, 2H), 7.45 (d, J = 8.2 Hz, 1H), 2.56 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -58.1 (s).

1-Methoxy-4-(trifluoromethyl)benzene (3r): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.75 mmol, 0.15 equiv), and the product was obtained as a colorless liquid in 87% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.60 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 4.73 (s, 2H), 2.47 (s, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -62.5 (s).
and the product was obtained as a colorless liquid in 69% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 8.8$ Hz, 2H), 6.97 (d, $J = 8.8$ Hz, 2H), 3.85 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -61.5 (s).

1-Methoxy-2-(trifluoromethyl)benzene (3s): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.075 mmol, 0.15 equiv), and the product was obtained as a colorless liquid in 84% yield by silica gel flash column chromatography. 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, $J = 7.9$ Hz, 1H), 7.50 (t, $J = 7.9$ Hz, 1H), 7.01 (dt, $J = 7.4$, 3.0 Hz, 2H), 3.91 (s, 3H). 19F NMR (376 MHz, CDCl$_3$) δ -62.5 (s).

1-Methyl-4-(trifluoromethyl)benzene (3t): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.075 mmol, 0.15 equiv). 60% yield was determined by 19F NMR. Crude 19F NMR (unlocked): δ −61.8 (s).

1-Methyl-2-(trifluoromethyl)benzene (3u): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.075 mmol, 0.1 equiv). 51% yield was determined by 19F NMR. Crude 19F NMR (unlocked): δ −61.2 (s).

1-Methyl-3-(trifluoromethyl)benzene (3v): The reaction was run on substrate (0.5 mmol), FSO$_2$CF$_2$CO$_2$Me (1.5 mmol, 3 equiv), and CuCl$_2$ (0.075 mmol, 0.1 equiv). 66% yield was determined by 19F NMR. Crude 19F NMR (unlocked): δ −61.8 (s).
5-Chloro-2-(trifluoromethyl)pyrimidine (3w): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.075 mmol, 0.1 equiv). 83% yield was determined by ¹⁹F NMR. Crude ¹⁹F NMR (unlocked): δ -69.8 (s).

2-Methoxy-3-(trifluoromethyl)pyridine (3x): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.05 mmol, 0.1 equiv), and the product was obtained as a colorless liquid in 70% yield by silica gel flash column chromatography. ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (d, J = 4.5 Hz, 1H), 7.84 (d, J = 7.4 Hz, 1H), 7.00 – 6.89 (m, 1H), 4.03 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.04 (s, 3F).

4-Methoxy-2-(trifluoromethyl)pyrimidine (3y): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.075 mmol, 0.15 equiv), and the product was obtained as a colorless liquid in 62% yield by silica gel flash column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 5.8 Hz, 1H), 6.87 (d, J = 5.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.1 (s).

3-(Trifluoromethyl)thiophene (3z): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.075 mmol, 0.1 equiv). 55% yield was determined by ¹⁹F NMR. Crude ¹⁹F NMR (unlocked): δ -58.6 (s).

2-(Trifluoromethyl)pyridine (3aa): The reaction was run on substrate (0.5 mmol), FSO₂CF₂CO₂Me (1.5 mmol, 3 equiv), and CuCl₂ (0.075 mmol, 0.15 equiv). 75% yield was determined by ¹⁹F NMR. Crude ¹⁹F NMR (unlocked): δ -67.8 (s, 3F).

4. Application of the reaction
Synthesis of 3e on gram scale

An oven-dried two-neck flask was charged with CuCl$_2$ (134 mg, 1 mmol), FSO$_2$CF$_2$CO$_2$Me (5.76 g, 30 mmol), 4-iodoacetophenone (2.46 g, 10 mmol) and DMF (30 mL) under nitrogen atmosphere. The reaction mixture was warmed stepwise to 110 °C and then the mixture was stirred at 110 °C for 2 hours. Then the reaction mixture was added ethyl acetate (50 mL). After the filtration and washing with water (2 × 50 mL) and brine (2 × 50 mL), the organic phase was dried with anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel with an ethyl acetate/petroleum ether mixture as eluent to afford the desired trifluoromethylated product 3e (1.60 g, 83%).

Synthesis of Prozac8

An oven-dried two-neck flask was charged with 4 (1.65 g, 10 mmol), NEt$_3$ (1.01 g, 10 mmol) and THF (10 mL). The Boc$_2$O (2.26 g, 12 mmol) was added dropwise via syringe. Then the mixture was stirred at room temperature for 2 h. After removal of the solvent under reduced pressure, the colorless liquid was dried in vacuo to afford the tert-butyl (3-hydroxy-3-phenylpropyl)(methyl)carbamate 5 (2.62 g, 99% yield).
1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.21 (m, 5H), 4.60 (dd, J = 10.4, 3.4 Hz, 1H), 3.79 (s, 1H), 3.05 (d, J = 22.7 Hz, 1H), 2.86 (d, J = 2.0 Hz, 3H), 1.93 (dddd, J = 11.5, 9.9, 6.3, 4.1 Hz, 2H), 1.46 (d, J = 1.5 Hz, 9H).

An oven-dried two-neck flask was charged with **5** (265 mg, 1 mmol), 4-iodophenol (330 mg, 1.5 mmol), PPh$_3$ (394 mg, 1.5 mmol) and THF (2 mL). The diisopropylazodicarboxylate (303 mg, 1.5 mmol) was added dropwise via syringe while keeping inner temperature between 0 ºC – 5 ºC. Then the mixture was allowed to warm to room temperate and stirred at room temperature for overnight. After completion of the reaction as indicated the TLC (the next day), the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography to afford the tert-butyl (3-(4-iodophenoxy)-3-phenylpropyl)(methyl)carbamate **6** (257 mg, 55% yield) as colorless oil.

This substrates was prepared according to the procedure described for **3e**. An oven-dried two-neck flask was charged with CuCl$_2$ (40.2 mg, 0.3 mmol), FSO$_2$CF$_2$CO$_2$Me (1.15 g, 6 mmol), tert-butyl (3-(4-iodophenoxy)-3-phenylpropyl)(methyl)carbamate **6** (0.93 g, 2 mmol) and DMF (6 mL) under nitrogen atmosphere. The reaction mixture was warmed stepwise to 110 ºC and then the mixture was stirred at 110 ºC for 2 hours. Then the reaction mixture was added ethyl acetate (30 mL). After the filtration and washing with water (2 × 30 mL) and brine (2 × 10 mL), the organic phase was dried with anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel with an ethyl acetate/petroleum ether mixture as eluent to afford the desired trifluoromethylated product tert-butyl methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)carbamate **7** (0.41 g, 50%) and the starting material.
(0.32 g) was recovered. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 8.5$ Hz, 2H), 7.38 – 7.21 (m, 5H), 6.88 (d, $J = 8.5$ Hz, 2H), 5.16 (dd, $J = 8.9$, 4.1 Hz, 1H), 3.41 (d, $J = 47.2$ Hz, 2H), 2.85 (s, 3H), 2.25 – 2.02 (m, 2H), 1.38 (d, $J = 14.0$ Hz, 9H). 19F NMR (376 MHz, CDCl$_3$) δ -61.6 (s, 3F).

An oven-dried two-neck flask was charged with 7 (220 mg, 0.54 mmol), TFA (616 mg, 5.4 mmol), CH$_2$Cl$_2$ (2 mL). Then the mixture was stirred at room temperature for 2 hours. The excess TFA was evaporated and the residue was dried in vacuo to give title compound (160 mg, 96%) as a yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 9.26 (s, 2H), 7.41 (d, $J = 8.6$ Hz, 2H), 7.35 – 7.23 (m, 5H), 6.85 (d, $J = 8.4$ Hz, 2H), 3.13 (s, 2H), 2.61 (s, 3H), 2.45 – 2.19 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ -61.7 (s, 3F), -75.8 (s, 3F).
5. Mechanistic Studies

Figure S1. CuCF$_3$ and [Cu(CF$_3$)$_4$]$^-$ species region of the 19F NMR spectrum of the reaction mixture of CuCl$_2$ with FSO$_2$CF$_2$CO$_2$Me in DMF under nitrogen at 110 °C
6. References

7. NMR data

1H NMR spectrum of 1-(trifluoromethyl)naphthalene (3a)

19F NMR spectrum of 1-(trifluoromethyl)naphthalene (3a)

1H NMR spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (3b)
19F NMR spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (3b)

1H NMR spectrum of 2-(trifluoromethyl)-1,1'-biphenyl (3c)
$^{19}\text{F NMR spectrum of 2-(trifluoromethyl)-1,1'-biphenyl (3c)}$

$^{1}\text{H NMR spectrum of 1-tert-Butyl-4-(trifluoromethyl)benzene (3d)}$
19F NMR spectrum of 1-tert-Butyl-4-(trifluoromethyl)benzene (3d)

1H NMR spectrum of 1-(4-(trifluoromethyl)phenyl)ethan-1-one (3e)
19F NMR spectrum of 1-(4-(trifluoromethyl)phenyl)ethan-1-one (3e)

1H NMR spectrum of methyl 3-(trifluoromethyl)benzoate (3f)
1H NMR spectrum of methyl 4-(trifluoromethyl)benzoate (3g)

19F NMR spectrum of methyl 3-(trifluoromethyl)benzoate (3f)
19F NMR spectrum of methyl 4-(trifluoromethyl)benzoate (3g)

1H NMR spectrum of methyl 2-(trifluoromethyl)benzoate (3h)
\[\text{19F NMR spectrum of methyl 2-(trifluoromethyl)benzoate (3h)} \]

\[\text{1H NMR spectrum of 2-(Trifluoromethyl)benzonitrile (3i)} \]
NMR spectrum of 2-(Trifluoromethyl)benzonitrile (3i)

1H NMR spectrum of 4-(Trifluoromethyl)benzonitrile (3j)
19F NMR spectrum of 4-(Trifluoromethyl)benzonitrile (3j)

1H NMR spectrum of 1-nitro-2-(trifluoromethyl)benzene (3k)
19F NMR spectrum of 1-nitro-2-(trifluoromethyl)benzene (3k)

1H NMR spectrum of 1-nitro-4-(trifluoromethyl)benzene (3l)
19F NMR spectrum of 1-nitro-4-(trifluoromethyl)benzene (3l)

1H NMR spectrum of 1-Nitro-4-(trifluoromethyl)benzene (3m)
19F NMR spectrum of 1-Nitro-4-(trifluoromethyl)benzene (3m)

1H NMR spectrum of (4-(trifluoromethyl)phenyl)methanol (3n)
19F NMR spectrum of (4-(trifluoromethyl)phenyl)methanol (3n)

Crude 19F NMR spectrum of 1-chloro-4-(trifluoromethyl)benzene (3o)
1H NMR spectrum of 4-(trifluoromethyl)benzaldehyde (3p)

19F NMR spectrum of 4-(trifluoromethyl)benzaldehyde (3p)
1H NMR spectrum of 2-(Trifluoromethyl)acetophenone (3q)

19F NMR spectrum of 2-(Trifluoromethyl)acetophenone (3q)
1H NMR spectrum of 1-Methoxy-4-(trifluoromethyl)benzene (3r)

19F NMR spectrum of 1-Methoxy-4-(trifluoromethyl)benzene (3r)
1H NMR spectrum of 1-methoxy-2-(trifluoromethyl)benzene (3s)

19F NMR spectrum of 1-methoxy-2-(trifluoromethyl)benzene (3s)
Crude 19F NMR spectrum of 1-methyl-4-(trifluoromethyl)benzene (3t)

Crude 19F NMR spectrum of 1-methyl-2-(trifluoromethyl)benzene (3u)
Crude 19F NMR spectrum of 1-methyl-3-(trifluoromethyl)benzene (3v)

Crude 19F NMR spectrum of 5-chloro-2-(trifluoromethyl)pyrimidine (3w)
1H NMR spectrum of 2-methoxy-3-(trifluoromethyl)pyridine (3x)

19F NMR spectrum of 2-methoxy-3-(trifluoromethyl)pyridine (3x)
1H NMR spectrum of 4-methoxy-2-(trifluoromethyl)pyrimidine (3y)

19F NMR spectrum of 4-methoxy-2-(trifluoromethyl)pyrimidine (3y)
Crude 19F NMR spectrum of 3-(trifluoromethyl)thiophene (3z)

Crude 19F NMR spectrum of 2-(trifluoromethyl)pyridine (3aa)
1H NMR spectrum of tert-butyl (3-hydroxy-3-phenylpropyl)(methyl)carbamate (5)

1H NMR spectrum of tert-butyl (3-(4-iodophenoxy)-3-phenylpropyl)(methyl)carbamate (6)
1H NMR spectrum of tert-butyl methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)carbamate (7)

19F NMR spectrum of tert-butyl methyl(3-phenyl-3-(4-
(trifluoromethyl)phenoxy)propyl)carbamate (7)

1H NMR spectrum of N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine trifluoroacetate (8)

19F NMR spectrum of N-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-
1-amine trifluoroacetate (8)