Supporting Information

Fused donor-acceptor π-conjugated diazatruxenone: synthesis and electronic properties

Angela Benito-Hernández, Mardia El-Sayed*, Juan T. López Navarrete, M. Carmen Ruiz Delgado*, Berta Gómez-Lor*

Contents

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis and characterization of compounds 3-11</td>
</tr>
<tr>
<td>2</td>
<td>Copy of representative NMR spectra of compounds 3-11</td>
</tr>
<tr>
<td>3</td>
<td>Solvent variation of the 1H NMR spectra of compound 3</td>
</tr>
<tr>
<td>4</td>
<td>Concentration variation of 1H NMR signals of compound 6</td>
</tr>
<tr>
<td>5</td>
<td>Absorption spectra of compounds 6-8</td>
</tr>
<tr>
<td>6</td>
<td>Cyclic voltammograms of compounds 6-8</td>
</tr>
<tr>
<td>7</td>
<td>DFT-calculations</td>
</tr>
</tbody>
</table>
1. Synthesis and Characterization of compounds 3-11

10,15-Dihydro-5H-diindolo[1,2-a:1′,2′-c]fluoren-5-one (3) and 2,2-di(1H-indol-3-yl)-1H-indene-1,3(2H)-dione (4): A mixture of indole (500 mg, 4.3 mmol), and indanetrione (380 mg, 2.1 mmol) in glacial acetic acid (15 mL) was heated under refluxing conditions with stirring for 18 h. The clear light yellow solution became dark red after a few minutes. The mixture was cooled to room temperature, the glacial acetic acid was evaporated by vacuum and the residue was washed with CHCl₃ and filtered to give 3 as a dark powder (450 mg, 60%). Compound 4 was obtained upon evaporation of the filtrate and purification of the residue by column chromatography (hexane:AcOEt 2:1) as a yellow solid (135 mg, 20%).

Compound 3: ¹H-NMR (300 MHz, DMSO-d₆) δ 11.95 (s, 1H, NH), 11.74 (s, 1H, NH), 9.08 (d, J= 7.9 Hz, 1H), 8.76 (d, J= 7.8 Hz, 1H), 8.17 (d, J= 7.2 Hz, 1H), 7.75 (d, J= 8.2 Hz, 1H), 7.67 (m, 1H), 7.58 (m, 3H), 7.47 (m, 1H), 7.39 (m, 1H), 7.26 (m, 2H). ¹³C-NMR (75 MHz, DMSO-d₆) δ 194.9, 144.6, 142.7, 141.4, 140.7, 135.7, 135.2, 134.1, 132.6, 127.7, 127.1, 126.4, 125.4, 124.4, 123.9, 122.6, 122.4, 121.7, 121.7, 121.0, 120.4, 120.0, 113.9, 113.2, 112.3, 111.7. MALDI-TOF MS m/z 358.2 (M⁺+1); HRMS (MALDI-TOF) caled for C₂₅H₁₄N₂O: 358.1101 found: 358.1112. mp 185-186 ºC

Compound 4: ¹H-NMR (300 MHz, CDCl₃) δ 8.17 (s, 2H, NH), 8.09 (m, 2H), 7.91 (m, 2H), 7.46 (d, J= 8.1 Hz, 2H), 7.32 (d, J= 7.2 Hz, 2H), 7.15 (t, J= 7.6 Hz, 2H), 6.99 (m, 2H), 6.95 (m, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 199.6, 140.5, 136.7, 136.1, 125.7, 125.2, 124.1, 122.3, 121.0, 119.9, 111.8, 111.3, 59.5. ESI-MS [M+Na]+ m/z 399; HRMS (ESI +) caled for C₂₅H₁₆N₂O₂Na: 399.1103 found: 399.1101. mp 180-183 ºC

7,12-dibromo-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (5): A mixture of 6-bromo-1H-indole (500 mg, 2.5 mmol), and indanetrione (227 mg, 1.27 mmol) in glacial acetic acid (15 mL) was heated under refluxing conditions with stirring for 18 h. The clear light yellow solution became dark red after a few minutes. The mixture was cooled to room temperature, the glacial acetic acid was evaporated by vacuum and the residue was washed with CHCl₃ and filtered to give 5 as a dark powder (550 mg, 83%). ¹H-NMR (300 MHz, Acetone-d₆) δ 11.31 (s, 1H), 11.08 (s, 1H), 8.94 (d, J = 8.5 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.69 (m, 2H), 7.46 (m, 2H), 7.35 (m, 2H), 7.19 (t, J = 7.2 Hz, 1H). ¹³C-NMR (75 MHz, Acetone-d₆) δ 194.0, 144.1, 142.6, 142.0, 135.5,
5,10-dimethyl-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (6): A mixture of diazatruxene (150 mg, 0.42 mmol), KOH (469 mg, 8.4 mmol), and Iodomethane (178.4 mg, 1.2 mmol) in acetone (10 mL) was stirred at room temperature in a sealed tube for 18h. The solvent was evaporated by under a stream of N₂. The mixture was partitioned between H₂O and CH₂Cl₂ and the organic phase dried over MgSO₄. The solvent was evaporated and the residue was purified by precipitation with CH₂Cl₂/CH₃CN to give 6 as a dark solid (102.5 mg, 63%). ¹H-NMR (300 MHz, CDCl₃) δ 9.40 (d, J=8.0 Hz, 1H), 8.48 (d, J=8.2 Hz, 1H), 7.67 (m, 2H), 7.45 (m, 6H), 7.19 (t, J=7.2 Hz, 1H), 4.34 (s, 3H), 4.14 (s, 3H). ¹³C-NMR δ (75 MHz, CDCl₃) 194.7, 145.2, 144.7, 143.5, 139.5, 137.9, 134.8, 133.9, 128.3, 126.7, 126.5, 126.4, 125.5, 124.1, 123.6, 122.9, 122.1, 121.7, 121.6, 120.4, 116.3, 114.2, 110.4, 108.9, 36.3, 35.6. UV (CH₂Cl₂, 25 ºC) λₘₐₓ 279 nm (log ε = 4.77). MALDI-TOF MS m/z 386.2 (M⁺ +1); HRMS (MALDI-TOF) calcd for C₂₇H₁₈N₂O: 386.1414 found: 386.1417. mp 185-190 ºC

5,10-dihexyl-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (7): A mixture of diazatruxene (250 mg, 0.70 mmol), KOH (782 mg, 14 mmol), [CH₃(CH₂)₃]₄N(HSO₄) (12 mg, 0.03 mmol), and 1-Iodohexane (444.3 mg, 2.1 mmol) in acetone (10 mL) was heated at 80 ºC with stirring for 18h. The mixture was cooled to room temperature, partitioned between H₂O and CH₂Cl₂ and the organic phase dried over MgSO₄. The solvent was evaporated and the residue was purified by precipitation with CH₂Cl₂/CH₃CN to give 5b as a dark solid (200.5 mg, 54%). ¹H-NMR (300 MHz, CDCl₃) δ 9.45 (d, J=7.9 Hz, 1H), 8.23 (d, J=8.1 Hz, 1H), 7.65 (d, J=7.2 Hz, 1H), 7.41 (m, 8H), 7.18 (t, J=7.2 Hz, 1H), 4.68 (t, J=8.0 Hz, 2H), 4.54 (t, J=7.6 Hz, 2H), 2.00 (t, J=7.8 Hz, 2H), 1.67 (m, 2H), 1.23 (m, 12H), 0.87 (m, 3H), 0.76 (m, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 194.8, 144.9, 144.3, 142.6, 138.9, 138.0, 134.9, 133.8, 128.4, 126.8, 126.2, 126.1, 125.6, 124.1, 123.5, 123.3, 122.9, 122.6, 120.4, 120.4, 116.7, 114.9, 111.8, 109.4, 47.2, 46.7, 31.5, 31.2, 30.1, 28.5, 26.4, 26.2, 22.5, 22.4, 14.0, 13.9. UV (CH₂Cl₂, 25 ºC) λₘₐₓ 280 nm (log ε = 4.92). MALDI-TOF MS m/z 526.4 (M⁺ +1); HRMS (MALDI-TOF) calcd for C₃₇H₃₈N₂O: 526.2979 found: 526.2985. mp 110-115 ºC
5,10-didodecyl-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (8): A mixture of diazatruxene (500 mg, 1.4 mmol), KOH (1.5 g, 28 mmol), [CH$_3$(CH_2)$_3$]$_4$N(HSO$_4$) (24 mg, 0.07 mmol), and 1-iodododecane (1.2 g, 4.2 mmol) in acetone (15 mL) was heated at 80 ºC with stirring for 18h. The mixture was cooled to room temperature, it was partitioned between H$_2$O and CH$_2$Cl$_2$ and the organic phase dried over MgSO$_4$. The solvent was evaporated and the residue was purified by precipitation with CH$_2$Cl$_2$/CH$_3$CN to give 5c as a red solid (200.5 mg, 57%). 1H-NMR (300 MHz, CDCl$_3$) δ 9.46 (d, J= 7.9 Hz, 1H), 8.26 (d, J= 8.2 Hz, 1H), 7.67 (d, J=7.0 Hz, 1H), 7.42 (m, 8H), 7.18 (t, J=7.3 Hz, 1H), 4.72 (d, J=8.0 Hz, 2H), 4.57 (d, J=7.6 Hz, 2H), 2.01 (t, J=7.7 Hz, 2H), 1.70 (m, 2H), 1.23 (m, 36H), 0.90 (m, 6H). 13C-NMR (75 MHz, CDCl$_3$) δ 194.7, 144.9, 144.2, 142.6, 138.9, 137.9, 134.8, 133.8, 128.3, 126.7, 126.2, 126.0, 125.6, 124.0, 123.5, 123.3, 122.8, 122.6, 122.6, 120.4, 120.3, 116.6, 114.8, 111.7, 109.4, 47.1, 46.7, 31.9, 30.2, 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.3, 29.3, 29.3, 29.0, 28.6, 26.6, 26.4, 22.7, 14.2. UV (CH$_2$Cl$_2$, 25 ºC) λ_{max} 279 nm (log ε = 4.76). MALDI-TOF MS m/z 694.6 (M$^+$+1); HRMS (MALDI-TOF) calcd for C$_{49}$H$_{62}$N$_2$O: 694.4857 found: 694.4849. mp 65-75 ºC.

7,12-dibromo-5,10-didodecyl-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (9): A mixture of 5 (400 mg, 0.77 mmol), KOH (862 mg, 15.4 mmol), [CH$_3$(CH_2)$_3$]$_4$N(HSO$_4$) (13 mg, 0.03 mmol), and 1-iodododecane (570 mg, 2 mmol) in acetone (10 mL) was heated at 80 ºC with stirring for 18h. The mixture was cooled to room temperature, partitioned between H$_2$O and CH$_2$Cl$_2$ and the organic phase dried over MgSO$_4$. The solvent was evaporated and the residue was purified by precipitation with CH$_2$Cl$_2$/CH$_3$CN to give 9 as a red solid (250 mg, 39%). 1H NMR (300 MHz, CDCl$_3$) δ 9.48 (d, J = 7.9 Hz, 1H), 8.33 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 7.1 Hz, 1H), 7.57 (m, 3H), 7.45 (m, 1H), 7.37 (m, 2H), 7.21 (t, J = 7.1 Hz, 1H), 4.80 (t, J = 8.0 Hz, 2H), 4.65 (t, J = 76 Hz, 2H), 2.03 (m, 2H), 1.72 (m, 2H), 1.18 (m, 36H), 0.89 (m, 6H). 13C-NMR (75 MHz, CDCl$_3$) δ 194.1, 144.7, 144.1, 143.1, 138.3, 137.6, 134.4, 133.8, 128.2, 127.0, 126.8, 124.2, 124.0, 123.5, 123.4, 122.7, 122.7, 122.6, 121.8, 121.1, 120.1, 116.0, 116.0, 114.4, 113.8, 111.2, 47.0, 46.5, 31.9, 31.9, 30.0, 29.6, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.3, 28.9, 28.6, 26.5, 26.3, 22.7, 22.7, 14.2, 14.1. MALDI-TOF MS m/z 852.4 (M$^+$+1); HRMS (MALDI-TOF) calcd for C$_{49}$H$_{60}$Br$_2$N$_2$O: 852.3053 found: 852.3064. UV (CH$_2$Cl$_2$, 25 ºC) λ_{max} 309 nm (log ε = 4.73). mp 90-95 ºC.
5,10-didodecyl-7,12-bis(4-methoxyphenyl)-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (10): A solution of 9 (100 mg, 0.11 mmol), (4-methoxyphenyl)boronic acid (54 mg, 0.35 mmol) and Pd(PPh₃)₄ (41 mg, 0.03 mmol) in 9 mL of tetrahydrofuran was carefully degassed over 15 minutes. Then, 1 mL of 2 M aqueous K₂CO₃ was added. The mixture was heated at 150 ºC for 2 hours in a microwave. The mixture was extracted with CH₂Cl₂, washed with brine, dried over MgSO₄ and the solvent was evaporated in vacuum. The residue was purified by column chromatography (hexane/CH₂Cl₂ 1:1) to give 10 as a purpura solid (35 mg, 32%). \(^1\)H-NMR (300 MHz, CDCl₃) δ 9.46 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.77-7.70 (m, 4H), 7.67 (m, 2H), 7.58 (s, 1H), 7.53 (m, 3H), 7.44 (t, J = 6.9 Hz, 1H), 7.19 (t, J = 7.3 Hz, 1H), 7.13-7.04 (m, 4H), 4.76 (t, J = 8.0 Hz, 2H), 4.62 (t, J = 7.5 Hz, 2H), 3.92 (s, 3H), 3.93 (s, 3H), 2.05 (m, 2H), 1.74 (m, 2H), 1.42-1.40 (m, 36H), 0.87 (m, 6H). \(^{13}\)C-NMR (75 MHz, CDCl₃) δ 194.6, 159.3, 159.1, 144.9, 144.7, 143.1, 139.1, 139.0, 138.8, 138.2, 134.9, 134.7, 133.7, 133.7, 128.6, 128.5, 127.9, 126.7, 125.8, 123.9, 123.7, 122.6, 122.4, 122.0, 121.5, 119.6, 119.6, 116.5, 114.4, 114.2, 109.3, 107.3, 55.4, 47.1, 46.5, 31.9, 31.9, 30.2, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.2, 28.3, 28.6, 26.6, 26.4, 22.7, 14.2. MALDI-TOF MS m/z 906.6 (M⁺); HRMS (MALDI-TOF) calcd for C₆₃H₇₄N₂O₃: 906.5694. found: 906.5687. UV (CH₂Cl₂, 25 ºC) \(\lambda_{\text{max}}\) (log \(\varepsilon\) = 3.84). mp 100-105 ºC

5,10-didodecyl-7,12-bis(4-nitrophenyl)-5H-indeno[1,2-a]indolo[3,2-c]carbazol-15(10H)-one (11): A solution of 9 (100 mg, 0.11 mmol), (4-nitrophenyl)boronic acid (59 mg, 0.35 mmol) and Pd(PPh₃)₄ (34 mg, 0.03 mmol) in 9 mL of tetrahydrofuran was carefully degassed over 15 minutes. Then, 1 mL of 2 M aqueous K₂CO₃ was added. The mixture was heated at 150 ºC for 2 hours in a microwave. The mixture was extracted with CH₂Cl₂, washed with brine, dried over MgSO₄ and the solvent was evaporated in vacuum. The residue was purified by column chromatography (hexane/CH₂Cl₂ 1:3) to give 11 as a purpura solid (33 mg, 32%). \(^1\)H-NMR (300 MHz, CDCl₃) δ 9.42 (d, J = 8.6 Hz, 1H), 8.39 (d, J = 8.4 Hz, 2H), 8.28 (d, J = 8.3 Hz, 2H), 8.20 (d, J = 8.30 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.68 (s, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.57-7.40 (m, 5H), 7.19 (t, J = 7.1 Hz, 1H), 4.61 (m, 4H), 1.94 (m, 2H), 1.73 (m, 2H), 1.37-0.97 (m, 36H), 0.86 (m, 6H). \(^{13}\)C-NMR (75 MHz, CDCl₃) δ 194.5, 148.3, 147.4, 147.1, 146.1, 144.5, 144.5, 144.5, 139.5, 138.8, 136.6, 134.6, 134.0, 128.9, 128.0, 127.9, 127.2, 126.3, 124.3, 124.1, 124.0, 123.7, 123.1, 122.8, 120.0, 119.9, 116.1, 114.1, 110.3, 108.0, 47.2, 22.7, 14.2.
46.6, 31.9, 30.2, 29.7, 29.6, 29.4, 29.4, 29.3, 29.2, 28.9, 28.6, 26.6, 26.4, 22.7, 14.1. MALDI-TOF MS m/z 936.6 (M⁺); HRMS (MALDI-TOF) calcd for C₆₁H₆₈N₄O₅: 936.5192 found: 936.5184. UV (CH₂Cl₂, 25 °C) λ max 282 nm (log ε = 4.67). mp 165-170 °C
3. 3 Copy of representative NMR spectra of compounds 3-11

Copy of 1H NMR spectrum (300 MHz, DMSO-d_6) of compound 3

![Copy of 1H NMR spectrum](image)

Copy of 13C NMR spectrum (75 MHz, DMSO-d_6) of compound 3

![Copy of 13C NMR spectrum](image)
Copy of HMQC spectrum (300 MHz, CD$_3$COCD$_3$) of compound 3
Copy of HMBC spectrum (300 MHz, CD$_3$COCD$_3$) of compound 3
Copy of COSY spectrum (300 MHz, CD$_3$COCD$_3$) of compound 3
Copy of 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 4

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 4
Copy of 1H NMR spectrum (300 MHz, Acetone-d_6) of compound 5

Copy of 13C NMR spectrum (75 MHz, Acetone-d_6) of compound 5
Copy of 1H NMR spectrum (300 MHz, CD$_3$Cl) of compound 6

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 6
Copy of 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 7

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 7
Copy of 1H NMR spectrum (300 MHz, CD$_3$Cl) of compound 8

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 8
Copy of HMQC spectrum (300 MHz, CDCl₃) of compound 8
Copy of HMBC spectrum (300 MHz, CDCl₃) of compound 8
Copy of COSY spectrum (300 MHz, CDCl\textsubscript{3}) of compound 8
Copy of 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 9

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 9
Copy of 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 10

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 10
Copy of 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 11

Copy of 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 11
4. Solvent variation of the 1H NMR spectra of compound 3

Figure S1. Variation of the NH 1H-NMR signals (marked with asterisks) of compound 3 in different solvents.
5. Concentration variation of 1H NMR signals of compound 6.

Figure S2. Variation of the aromatic and methylenic 1H-NMR signals of compound 6 upon increasing the concentration.
6. Absorption spectra of compounds 6-8.

Figure S3. Experimental UV-vis spectra of 6, 7 and 8 in CH$_2$Cl$_2$ solutions, $c = 1 \times 10^{-5}$ M
7. Cyclic voltammograms of compounds 6-8.

Figure S4. CV of 6, 7 and 8 at $c = 1 \times 10^{-3}$ M recorded at a scan rate 100 mV/s in CH$_2$Cl$_2$/0.1 M TBAPF$_6$ measured versus Ag/AgCl (3 M NaCl).
8. DFT Calculations.

Figure S5. Simulated absorption spectra of triindole 1, truxenone 2 and diazatruxenone 3 as determined with TD-DFT at the B3LYP/6-31G** level.

Figure S6. Simulated absorption spectra together with the excitations (wavelength vs. oscillator strength) shown as vertical bars for triindole 1, truxenone 2 and diazatruxenone 3 as determined with TD-DFT at the B3LYP/6-31G** level.
Figure S7. Frontier molecular orbital energies (B3LYP/6-31G**) of diazatruxenone 3 involved in the $S_0 \rightarrow S_1$ and $S_0 \rightarrow S_2$ transitions.

Figure S8. Simulated absorption spectra of peripherally unsubstituted diazatruxenone 6 and peripherally substituted diazatruxenones 10 and 11.
Figure S9. Simulated absorption spectra together with the excitations (wavelength vs. oscillator strength) shown as vertical bars for peripherally unsubstituted diazatruxenone 6 (a) and peripherally substituted diazatruxenones 10 (b) and 11 (c) as determined with TD-DFT at the B3LYP/6-31G** level.
Figure S10. Frontier molecular orbital energies (B3LYP/6-31G**) of peripherally substituted diazatruxenones 10 and 11 involved in the most intense electronic transitions.

Figure S11. DFT-calculated molecular orbital energies (B3LYP/6-31G**) and HOMO-LUMO gaps for peripherally unsubstituted diazatruxenone 6 and peripherally substituted diazatruxenones 10 and 11.