Supporting Information

Palladium-catalysed coupling of α-halo vinylphosphonate and α-phosphonovinyl sulfonate with alkylzincs: straightforward and versatile synthesis of α-alkyl vinylphosphonates

Li Zhang, a Yewen Fang, b,c Xiaoping Jin, c Ting Guo, d Ruifeng Li, a Yan Li, d Xie Li, b Qilin Ye, b and Xiang Luo b

a College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan 030024, China
b School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
c Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, No. 888 Yinxian Avenue East, Ningbo 315100, China
d Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 Youyi Dadao, Wuhan 430062, China
e Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Table of contents

General information .. S2
Procedure for the preparation of alkylzinc bromide (2a-m, 5) .. S2
Procedure for the preparation of benzylzinc chloride (4a-l) ... S2
General procedure for the synthesis of 3a-l, 3n, 6a-m, 7, 9, 11, 13, 15, 17 via Pd-catalysed Negishi cross-coupling ... S2
The synthesis of 3m via Ni-catalysed Negishi cross-coupling of α-bromovinylphosphonate (1a) with pent-4-en-1-ylzinc bromide (2m) ... S3
The synthesis of 19 via Pd-catalysed Negishi cross-coupling of diethyl α-bromo ethenylphosphonate (1a) with dimethylzinc reagent ... S3
General procedure for the diimide reduction of alkenylphosphonates to access 1-alkylethylphosphonates (20a-f) ... S3
Characterizations of new compounds .. S3
References of known compounds .. S13
References .. S13
1H, 13C, 31P, 19F NMR spectra of new compounds .. S13

51
General information

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. DMA and toluene were distilled over CaH$_2$ prior to use. Zinc power was activated by washing with a dilute HCl solution.$^{[1]}$ Alkyl bromide, benzyl chloride, and dimethylzinc were obtained from commercial sources and used without further purification unless otherwise noted. Organozinc reagents,$^{[2]}$ α-halo vinylphosphonates,$^{[3]}$ and α-phosphonovinyl sulfonates$^{[4]}$ were synthesized according to the published procedures. The concentration of the resulting organozinc reagents were determined by iodiometric titration.$^{[5]}$

NMR spectra were recorded on a Bruker Avance 500 spectrometer (500 MHz). Chemical shifts were reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (CDCl$_3$, $\delta_H = 7.26$, $\delta_C = 77.0$). Spectra were reported as follow: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were recorded on ESI-Q-TOF spectrometer (Bruker microTOF-Q II).

Procedure for the preparation of alkylzinc bromide (2a-m, 5)

A dry 25 mL Schlenk-flask was heated with a heat gun (350 °C) for 10 min under high vacuum. After cooling to room temperature, the flask was flushed with nitrogen (repeated 3 times). Then, Zinc power (975 mg, 15 mmol), I$_2$ (127 mg, 0.5 mmol) and dry DMA (10 mL) was added. Stirring the mixture until the red color of I$_2$ disappeared, alkylic bromide (10 mmol) was added and stirred at 80 °C for 3-4 h.

Procedure for the preparation of benzylic zinc chloride (4a-l)

A dry 25 mL Schlenk-flask was heated with a heat gun (350 °C) for 10 min under high vacuum. After cooling to room temperature, the flask was flushed with nitrogen (repeated 3 times). Then, Zinc power (1.5-2.0 equiv), I$_2$ (127 mg, 0.5 mmol) and dry DMA (10 mL) was added. Stirring the mixture until the red color of I$_2$ disappeared, benzylic chloride (10 mmol) was added and stirred at the required temperature (40-80 °C) for 4 h.

General procedure for the synthesis of 3a-l, 3n, 6a-m, 7, 9, 11, 13, 15, 17 via Pd-catalysed Negishi cross-coupling

A Schlenk-flask was loaded with α-(pseudo)halo vinylphosphonate (0.4 mmol), Pd(OAc)$_2$ (4.5 mg, 0.02 mmol), SPhos (16.4 mg, 0.04 mol). The flask was held under vacuum for 10 min and filled with nitrogen (repeated 3 times). DMA (1 mL) was introduced and the mixture was stirred. Alkylzinc bromide (1.2-1.4 equiv) or benzylic zinc chloride (1.1-1.2 equiv) was added dropwise at room temperature and stirred at 40 °C for 1-3 h. Upon completion of the reaction, the resulting mixture was cooled down to room temperature and quenched with saturated NH$_4$Cl (1 mL) and 1 N HCl (2 mL), and the mixture was extracted with EtOAc (4 × 4 mL). The combined organic phase was washed with brine, dried over anhydrous Na$_2$SO$_4$ overnight, filtered, and evaporated. The crude product was purified by column chromatography on silica gel with petroleum ether/EtOAc (1/1, v/v) as the eluent to gave the cross-coupling product α-substituted vinylphosphonate as a pale yellow oil.

The synthesis of 3m via Ni-catalysed Negishi cross-coupling of α-bromovinylphosphonate (1a)
with pent-4-en-1-ylzinc bromide (2m)

A Schlenk-flask was loaded with diethyl α-bromo vinylphosphonate (97.2 mg, 0.4 mmol), NiCl₂(dppp) (21.6 mg, 0.04 mol). The flask was held under vacuum for 10 min and filled with nitrogen (repeated 3 times). Then DMA (1 mL) was introduced and the mixture was stirred. The pent-4-en-1-ylzinc bromide (1.2 equiv) was added dropwise at room temperature and stirred at 40 °C for 3 h. Upon completion of the reaction, the resulting mixture was cooled down to room temperature and quenched with saturated NH₄Cl (1 mL) and 1 N HCl (2 mL), and the mixture was extracted with EtOAc (4 × 4 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ overnight, filtered, and evaporated. The crude product was purified by column chromatography on silica gel with petroleum ether/EtOAc (1/1, v/v) as the eluent to gave diethyl hepta-1,6-dien-2-ylphosphonate 3m (68.7 mg, 74%) as a colorless oil.

The synthesis of 19 via Pd-catalysed Negishi cross-coupling of diethyl α-bromo vinylphosphonate (1a) with dimethylzinc reagent

A Schlenk-flask was loaded with diethyl α-bromo vinylphosphonate (4.86 g, 20 mmol), Pd(OAc)₂ (224.5 mg, 1.0 mmol), SPhos (820 mg, 2.0 mmol). The flask was held under vacuum for 10 min and then filled with nitrogen (repeated 3 times). Then toluene (88 mL) was introduced and the mixture was stirred. The dimethylzinc (1 M in toluene, 12 mL, 1.2 equiv) was added dropwise at 0 °C and then stirred at 40 °C for 6 h. Upon completion of the reaction, the resulting mixture was cooled down to room temperature and quenched with saturated NH₄Cl (30 mL), and the mixture was extracted with EtOAc (4 × 30 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ overnight, filtered, and evaporated. The crude product was purified by column chromatography on silica gel with petroleum ether/EtOAc (1/1, v/v) as the eluent to gave the cross-coupling product α-methyl vinylphosphonate 19 (1.61g, 45%) as a pale yellow oil.

General procedure for the diimide reduction of alkenylphosphonates to access 1-alkylethylphosphonates (20a-f)

A Schlenk flask was loaded with diethyl α-substituted vinylphosphonate (82.2 mg, 0.3 mmol), NBSH (130.0 mg, 0.6 mmol), K₃PO₄ (63.6 mg, 0.3 mmol) and held under vacuum for 10 min and then filled with nitrogen. Then CH₂CN (2.0 mL) was introduced and the mixture was stirred at rt for 5-6 h. After completion of the reaction, the mixture was added water (3 mL), and extracted with EtOAc (4 × 3 m L). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ overnight, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel column using petroleum ether/EtOAc (1/1, v/v) as eluent to give 1-alkylethylphosphonates (20a-f) as an oil.

Characterizations of new compounds

Diisopropyl (1-chlorovinyl)phosphonate (1f). Pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 1.35 (d, J = 6.2 Hz, 6H), 1.38 (d, J = 6.2 Hz, 6H), 4.67-4.76 (m, 2H), 6.12 (dd, J = 35.7 Hz, 1.3 Hz, 1H), 6.43 (dd, J = 13.3 Hz, 1.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 23.6 (d, J = 5.1 Hz), 24.0
(d, J = 3.8 Hz), 72.3 (d, J = 5.7 Hz), 130.2 (d, J = 16.7 Hz), 131.8 (d, J = 206.3 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 5.7; IR (neat): ν (cm$^{-1}$) 3756, 3343, 2936, 2899, 2856, 1464, 1261, 991; GC-MS: m/z (rel intensity) 227 (M+H$^+$, 4), 185 (18), 169 (76), 144 (100), 124 (22), 107 (21), 98 (12), 81 (12); HRMS (ESI) C$_8$H$_{17}$ClO$_3$P [M+H$^+$] 227.0598, found 227.0611.

Ethyl 5-(diethoxyphosphoryl)hex-5-enoate (3a). Pale yellow oil (93.4 mg, 84% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.24-1.27 (m, 3H), 1.32 (t, J = 7.1 Hz, 6H), 1.84-1.90 (m, 2H), 2.26-2.34 (m, 4H), 4.05-4.15 (m, 6H), 5.78 (d, J = 48.6 Hz, 1H), 6.06 (d, J = 22.9 Hz 1H); 13C NMR (125 MHz, CDCl$_3$): δ 14.2, 16.3 (d, J = 6.3 Hz), 23.2 (d, J = 5.4 Hz), 31.5 (d, J = 11.1 Hz), 33.5, 60.3, 61.8 (d, J = 5.7 Hz), 129.6 (d, J = 9.5 Hz), 138.5 (d, J = 171.1 Hz), 173.2; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.3; IR (neat): ν (cm$^{-1}$) 3482, 2938, 2897, 2843, 1732, 1464, 1253, 1053, 1024, 966; LC-MS (ESI) [M+H$^+$]: 279.29; HRMS (ESI) calcd for C$_{12}$H$_{23}$NaO$_3$P [M+Na$^+$] 299.1747, found 299.1750.

Diethyl dec-1-en-2-ylphosphonate (3c). Pale yellow oil (83.9 mg, 76% yield); 1H NMR (500 MHz, CDCl$_3$): δ 0.88 (t, J = 7.1 Hz, 6.8 Hz, 3H), 1.25-1.34 (m, 16H), 1.48-1.54 (m, 2H), 2.20-2.26 (m, 2H), 4.02-4.13 (m, 4H), 5.75 (dd, J = 49.1 Hz, 1.6 Hz, 1H), 6.02 (d, J = 23.1 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 14.1, 16.3 (d, J = 6.3 Hz), 22.6, 27.9 (d, J = 5.7 Hz), 29.1, 29.2, 29.3, 31.8, 32.1 (d, J = 10.8 Hz), 61.7 (d, J = 5.8 Hz), 128.8 (d, J = 9.6 Hz), 139.4 (d, J = 169.6 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 20.0; IR (neat): ν (cm$^{-1}$) 3480, 2938, 2897, 2843, 1732, 1464, 1258, 1055, 1028, 962; LC-MS (ESI) [M+H$^+$]: 277.34; HRMS (ESI) calcd for C$_{14}$H$_{29}$NaO$_3$P [M+Na$^+$] 299.1747, found 299.1750.

Diethyl hept-1-en-2-ylphosphonate (3d). Pale yellow oil (82.4 mg, 88% yield); 1H NMR (500 MHz, CDCl$_3$): δ 0.89 (t, J = 6.8 Hz, 3H), 1.29-1.35 (m, 10H), 1.49-1.55 (m, 2H), 2.20-2.26 (m, 2H), 4.02-4.13 (m, 4H), 5.75 (dd, J = 49.1 Hz, 1.0 Hz, 1H), 6.02 (d, J = 23.1 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 13.9, 16.3 (d, J = 6.3 Hz), 22.4, 27.5 (d, J = 5.4 Hz), 31.3, 32.0 (d, J = 10.7 Hz), 61.6 (d, J = 5.6 Hz), 128.8 (d, J = 9.3 Hz), 139.4 (d, J = 169.6 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.9; IR (neat): ν (cm$^{-1}$) 3476, 2936, 2901, 2857, 1464, 1257, 1026, 960, 792; GC-MS: m/z (rel intensity) 235 (M+H$^+$, 10), 205 (44), 191 (29), 177 (74), 149 (100), 135 (53), 95 (44), 81 (44), 98 (12), 81 (12); HRMS (ESI) C$_{11}$H$_{23}$NaO$_3$P [M+Na$^+$] 257.1277, found 257.1288.
Diethyl (3-cyclohexylprop-1-en-2-yl)phosphonate (3f). Pale yellow oil (92.6 mg, 89% yield); 1H NMR (500 MHz, CDCl$_3$): δ 0.80-0.89 (m, 2H), 1.09-1.27 (m, 3H), 1.32 (t, $J = 7.1$ Hz, 6H), 1.56-1.74 (m, 6H), 2.12 (dd, $J = 15.9$ Hz, 7.1 Hz, 2H), 4.01-4.12 (m, 4H), 5.70 (dd, $J = 48.9$ Hz, 1.4 Hz, 1H), 6.05 (dd, $J = 22.8$ Hz, 1.3 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, $J = 6.4$ Hz), 26.2, 26.5, 33.0, 35.7 (d, $J = 3.5$ Hz), 40.6 (d, $J = 10.8$ Hz), 61.6 (d, $J = 5.9$ Hz), 130.3 (d, $J = 9.7$ Hz), 137.6 (d, $J = 169.2$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.9; IR (neat): ν (cm$^{-1}$) 3483, 2938, 2897, 2843, 1464, 1226, 1026, 961; GC-MS: m/z (rel intensity) 260 (M$^+$, 12), 178 (84), 150 (100), 122 (89), 96 (46), 82 (29); HRMS (ESI) calcd for C$_{13}$H$_{26}$O$_3$P [M+H]$^+$ 261.1541, found 261.1545.

Diethyl (5-phenylpent-1-en-2-yl)phosphonate (3h). Pale yellow oil (86.9 mg, 77% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.31 (t, $J = 7.1$ Hz, 6H), 1.83-1.89 (m, 2H), 2.26-2.32 (m, 2H), 2.64 (t, $J = 7.7$ Hz, 2H), 4.01-4.13 (m, 4H), 5.77 (d, $J = 48.9$ Hz, 1.5 Hz, 1H), 6.05 (d, $J = 23.0$ Hz, 1H), 7.17-7.20 (m, 3H), 7.27-7.30 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.2 (d, $J = 6.3$ Hz), 29.6 (d, $J = 5.4$ Hz), 31.7 (d, $J = 10.8$ Hz), 35.2, 61.7 (d, $J = 5.7$ Hz), 125.8, 128.26, 128.32, 129.2 (d, $J = 9.4$ Hz), 138.9 (d, $J = 170.3$ Hz), 141.8; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.7; IR (neat): ν (cm$^{-1}$) 3502, 2938, 2895, 2843, 1712, 1463, 1254, 1053, 1026, 964; LC-MS (ESI) [M+H]$^+$: 283.19; HRMS (ESI) calcd for C$_{15}$H$_{24}$O$_3$P [M+H]$^+$ 283.1458, found 283.1468.

Diethyl (5-(1,3-dioxoisoindolin-2-yl)pent-1-en-2-yl)phosphonate (3i). Pale yellow oil (56.2 mg, 56% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.31 (t, $J = 7.1$ Hz, 6H), 1.90-1.96 (m, 2H), 2.29-2.34 (m, 2H), 3.70-3.73 (m, 2H), 4.02-4.13 (m, 4H), 5.83 (dd, $J = 48.6$ Hz, 1.4 Hz, 1H), 6.07(dd, $J = 23.0$ Hz, 0.9 Hz, 1H), 7.71-7.73 (m, 2H), 7.84-7.85 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, $J = 6.2$ Hz), 16.9, 24.7, 26.9 (d, $J = 5.2$ Hz), 123.2, 129.7 (d, $J = 9.3$ Hz), 132.0, 134.0, 138.0 (d, $J = 171.8$ Hz), 168.3; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.2; IR (neat): ν (cm$^{-1}$) 3464, 2937, 2897, 2843, 1712, 1464, 917; LC-MS (ESI) [M+H]$^+$: 252.37; HRMS (ESI) calcd for C$_{17}$H$_{22}$NNaO$_5$P [M+Na]$^+$ 374.1128, found 374.1152.

Diethyl (6-cyanohex-1-en-2-yl)phosphonate (3j). Pale yellow oil (86.2 mg, 88% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.32 (t, $J = 7.1$ Hz, 6H), 1.70 (br, 4H), 2.28-2.31 (m, 2H), 2.37-2.38 (m, 2H), 4.05-4.12 (m, 4H), 5.76 (dd, $J = 48.4$ Hz, 1.2 Hz, 1H), 6.04 (d, $J = 22.8$ Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, $J = 6.2$ Hz), 16.9, 24.7, 26.9 (d, $J = 5.2$ Hz), 31.4 (d, $J = 11.0$ Hz), 61.8 (d, $J = 5.8$ Hz), 119.4, 129.4 (d, $J = 9.2$ Hz), 138.3 (d, $J = 171.8$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.1; IR (neat): ν (cm$^{-1}$) 3447, 2936, 2899, 2843, 1464, 1223, 1051, 1024, 966;
5-(Diethoxyphosphoryl)hex-5-en-1-yl acetate (3k). Pale yellow oil (93.4 mg, 80% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.32 (t, J = 7.1 Hz, 6H), 1.37-1.43 (m, 2H), 1.53-1.59 (m, 2H), 1.62-1.68 (m, 2H), 2.04 (s, 3H), 2.22-2.28 (m, 2H), 4.01-4.13 (m, 6H), 5.75 (dd, J = 48.9 Hz, 1.4 Hz, 1H), 6.03 (d, J = 22.9 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, J = 6.1 Hz), 20.9, 25.4, 27.5 (d, J = 5.2 Hz), 28.3, 31.9 (d, J = 10.8 Hz), 61.7 (d, J = 5.5 Hz), 64.3, 129.0 (d, J = 9.4 Hz), 139.0 (d, J = 170.5 Hz), 171.1; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.7; IR (neat): ν (cm$^{-1}$) 3495, 2938, 2897, 2843, 1738, 1464, 1240, 1026, 964; LC-MS (ESI) [M+H]$^+$: 246.26; HRMS (ESI) calcd for C$_{11}$H$_{21}$O$_3$P [M+H]$^+$ 246.1254, found 246.1259.

Diethyl (8-chlorooct-1-en-2-yl)phosphonate (3l). Pale yellow oil (89.1 mg, 79% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.30-1.35 (m, 8H), 1.41-1.48 (m, 2H), 1.50-1.56 (m, 2H), 1.73-1.79 (m, 2H), 2.20-2.26 (m, 2H), 3.50-3.53 (m, 2H), 4.03-4.11 (m, 4H), 5.74 (d, J = 49.0 Hz, 1H), 6.01 (dd, J = 23.0 Hz, 0.6 Hz, 1H), 32.4, 44.9, 61.7 (d, J = 5.6 Hz), 129.0 (d, J = 9.3 Hz), 139.1 (d, J = 170.3 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.8; IR (neat): ν (cm$^{-1}$) 3474, 2938, 2897, 2843, 1464, 1242, 1053, 1026, 964; GC-MS: m/z (rel intensity) 282 (M$^+$, 0.4), 247 (100), 219 (31), 205 (39), 177 (51), 163 (27), 149 (73), 109 (80), 81 (40); HRMS (ESI) calcd for C$_{13}$H$_{26}$ClNaO$_3$P [M+Na]$^+$: 305.1044, found 305.1059.

Diethyl hepta-1,6-dien-2-ylphosphonate (3m). Pale yellow oil (68.7 mg, 74% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.30 (t, J = 7.1 Hz, 6H), 1.58-1.64 (m, 2H), 2.04-2.09 (m, 2H), 2.21-2.27 (m, 2H), 4.00-4.11 (m, 4H), 4.94-5.02 (m, 2H), 5.69-5.82 (m, 2H), 6.02 (d, J = 23.0 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, J = 6.3 Hz), 26.5, 27.7 (d, J = 5.4 Hz), 32.4, 44.9, 61.7 (d, J = 5.6 Hz), 129.0 (d, J = 9.3 Hz), 139.1 (d, J = 170.3 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.7; IR (neat): ν (cm$^{-1}$) 3464, 2938, 2897, 2843, 1464, 1242, 1053, 1026, 964; LC-MS (ESI) [M+H]$^+$: 233.26; HRMS (ESI) calcd for C$_{11}$H$_{21}$NaO$_3$P [M+Na]$^+$ 255.1121, found 255.1123.

Diethyl (3-(m-tolyl)prop-1-en-2-yl)phosphonate (6b). Pale yellow oil (99.7 mg, 93% yield); 1H
NMR (500 MHz, CDCl₃): δ 1.27 (t, J = 7.1 Hz, 6H), 2.33 (s, 3H), 3.52 (d, J = 11.3 Hz, 2H), 3.93-4.09 (m, 4H), 5.58 (dd, J = 47.8 Hz, 1.6 Hz, 1H), 6.10 (dd, J = 22.3 Hz, 1.3 Hz, 1H), 6.98-7.05 (m, 3H), 7.18-7.21 (t, J = 7.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 16.1 (d, J = 6.4 Hz), 21.3, 38.1 (d, J = 11.6 Hz), 61.7 (d, J = 5.7 Hz), 126.4, 127.2, 128.2, 130.1, 130.6 (d, J = 9.5 Hz), 137.5 (d, J = 7.6 Hz), 137.9, 139.0 (d, J = 171.8 Hz); ³¹P NMR (202.5 MHz, CDCl₃): δ 19.1; IR (neat): ν (cm⁻¹) 3480, 2938, 2897, 2843, 1722, 1464, 1163, 1026, 966; LC-MS (ESI) [M+H]⁺: 269.31; HRMS (ESI) calcd for C₁₄H₂₁NaO₃P [M+Na]⁺ 291.1121, found 291.1139.

Diethyl (3-(p-tolyl)prop-1-en-2-yl)phosphonate (6c). Pale yellow oil (96.5 mg, 90% yield); ¹H NMR (500 MHz, CDCl₃): δ 1.27 (t, J = 7.1 Hz, 6H), 2.33 (s, 3H), 3.51 (d, J = 11.1 Hz, 2H), 3.93-4.09 (m, 4H), 5.56 (dd, J = 47.9 Hz, 1.5 Hz, 1H), 6.09 (dd, J = 22.3 Hz, 1.1 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 16.2 (d, J = 6.4 Hz), 21.0, 37.8 (d, J = 11.6 Hz), 61.7 (d, J = 5.7 Hz), 129.1, 129.2, 130.5 (d, J = 9.5 Hz), 134.5 (d, J = 7.6 Hz), 136.0, 139.2 (d, J = 171.2 Hz); ³¹P NMR (202.5 MHz, CDCl₃): δ 19.2; IR (neat): ν (cm⁻¹) 3426, 2938, 2897, 2843, 1722, 1464, 1163, 1024, 968; LC-MS (ESI) [M+H]⁺: 269.32; HRMS (ESI) calcd for C₁₄H₂₂O₃P [M+H]⁺ 269.1301, found 269.1293.

Diethyl (3-(4-(tert-butyl)phenyl)prop-1-en-2-yl)phosphonate (6d). Pale yellow oil (111.6 mg, 90% yield); ¹H NMR (500 MHz, CDCl₃): δ 1.24 (t, J = 7.1 Hz, 6H), 1.31 (s, 9H), 3.52 (d, J = 11.7 Hz, 2H), 3.90-4.08 (m, 4H), 5.61 (dd, J = 47.9 Hz, 1.5 Hz, 1H), 6.10 (dd, J = 22.3 Hz, 1.1 Hz, 1H), 7.07 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 16.2 (d, J = 6.6 Hz), 31.3, 34.4, 37.9 (d, J = 11.6 Hz), 61.7 (d, J = 5.5 Hz), 125.3, 129.0, 130.7 (d, J = 9.6 Hz), 134.5 (d, J = 7.3 Hz), 139.1 (d, J = 171.3 Hz), 149.4; ³¹P NMR (202.5 MHz, CDCl₃): δ 19.1; IR (neat): ν (cm⁻¹) 3456, 2938, 2895, 2843, 1514, 1464, 1234, 1165, 1026, 966; LC-MS (ESI) [M+H]⁺: 311.43; HRMS (ESI) calcd for C₁₇H₂₇O₃P [M+H]⁺ 311.1771, found 311.1779.

Diethyl (3-(4-methoxyphenyl)prop-1-en-2-yl)phosphonate (6e). Pale yellow oil (100.0 mg, 88% yield); ¹H NMR (500 MHz, CDCl₃): δ 1.27 (t, J = 7.1 Hz, 6H), 3.49 (d, J = 11.7 Hz, 2H), 3.80 (s, 3H), 3.94-4.08 (m, 4H), 5.62 (dd, J = 48.9 Hz, 1.5 Hz, 1H), 6.10 (dd, J = 22.7 Hz, 1.1 Hz, 1H),
6.83-6.88 (m, 2H), 7.08-7.11 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.2 (d, $J = 6.4$ Hz), 37.4 (d, $J = 11.8$ Hz), 55.3, 62.4 (d, $J = 5.6$ Hz), 113.9, 129.3 (d, $J = 7.9$ Hz), 130.4, 131.3 (d, $J = 9.8$ Hz), 138.5 (d, $J = 173.1$ Hz), 158.4; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.1; IR (neat): ν (cm$^{-1}$) 3400, 2938, 2899, 2843, 1767, 1612, 1512, 1464, 1248, 1163, 1026, 968; LC-MS (ESI) [M+H]$^+$: 285.35; HRMS (ESI) calcd for C$_{14}$H$_{21}$NaO$_4$P [M+Na]$^+$ 307.1070, found 307.1080.

Diethyl (3-(2-chlorophenyl)prop-1-en-2-yl)phosphonate (6f). Pale yellow oil (107.1 mg, 93% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.31 (t, $J = 7.1$ Hz, 6H), 3.68 (dt, $J = 9.0$ Hz, 1.7Hz, 2H), 4.01-4.15 (m, 4H), 5.40 (dd, $J = 47.8$ Hz, 1.5 Hz, 1H), 6.10 (dd, $J = 22.3$ Hz, 1.1 Hz, 1H), 7.19-7.25 (m, 3H), 7.37-7.38 (m, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, $J = 6.4$ Hz), 35.8 (d, $J = 12.2$ Hz), 61.9 (d, $J = 5.5$ Hz), 126.9, 128.4, 129.6, 130.4 (d, $J = 9.4$ Hz), 131.8, 134.5, 135.3 (d, $J = 9.7$ Hz), 136.9 (d, $J = 173.1$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 18.6; IR (neat): ν (cm$^{-1}$) 3478, 2938, 2897, 2843, 1464, 1250, 1024, 966; LC-MS (ESI) [M+H]$^+$: 289.28; HRMS (ESI) calcd for C$_{13}$H$_{19}$ClO$_3$P [M+H]$^+$ 289.0755, found 289.0777.

Diethyl (3-(4-bromophenyl)prop-1-en-2-yl)phosphonate (6g). Pale yellow oil (126.2 mg, 95% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.26 (t, $J = 7.1$ Hz, 6H), 3.51 (d, $J = 12.0$ Hz, 2H), 3.94-4.10 (m, 4H), 5.62 (dd, $J = 48.3$ Hz, 1.4 Hz, 1H), 6.12 (dd, $J = 22.5$ Hz, 1.2 Hz, 1H), 7.05-7.08 (m, 2H), 7.42-7.44 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.1 (d, $J = 6.3$ Hz), 37.7 (d, $J = 11.8$ Hz), 62.3 (d, $J = 6.0$ Hz), 120.5, 131.0, 131.3 (d, $J = 9.8$ Hz), 131.5, 136.5 (d, $J = 7.2$ Hz), 138.0 (d, $J = 174.2$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 18.5; IR (neat): ν (cm$^{-1}$) 3416, 2938, 2895, 2843, 1766, 1464, 1215, 1163, 1026, 968; LC-MS (ESI) [M+H]$^+$: 333.31; HRMS (ESI) calcd for C$_{13}$H$_{18}$BrNaO$_3$P [M+Na]$^+$ 355.0069, found 355.0077.

Diethyl (3-(4-fluorophenyl)prop-1-en-2-yl)phosphonate (6h). Pale yellow oil (103.4 mg, 95% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.26 (t, $J = 7.1$ Hz, 6H), 3.53 (d, $J = 11.7$ Hz, 2H), 3.93-4.09 (m, 4H), 5.58 (dd, $J = 47.6$ Hz, 1.6 Hz, 1H), 6.10 (dd, $J = 23.3$ Hz, 1.1 Hz, 1H), 6.98-7.01 (m, 2H), 7.14-7.16 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.1 (d, $J = 6.4$ Hz), 37.6 (d, $J = 11.8$ Hz), 62.3 (d, $J = 5.8$ Hz), 115.3 (d, $J = 21.0$ Hz), 130.8 (d, $J = 7.9$ Hz), 131.2 (d, $J = 9.7$ Hz), 133.1 (dd,
$J = 7.2$ Hz, 3.5 Hz), 138.3 (d, $J = 174.0$ Hz), 161.7 (d, $J = 243.6$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 18.7; 19F NMR (470 MHz, CDCl$_3$): δ -116.6; IR (neat): ν (cm$^{-1}$) 3422, 2938, 2897, 2843, 1464, 1223, 1026, 968; LC-MS (ESI) [M+H]$^+$: 273.32; HRMS (ESI) calcd for C$_{13}$H$_{18}$FNaO$_3$P $[\text{M+Na}]^+$: 295.0870, found 295.0880.

Diethyl (3-(4-cyanophenyl)prop-1-en-2-yl)phosphonate (6i). Pale yellow oil (109.4 mg, 98% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.25 (t, $J = 7.1$ Hz, 6H), 3.63 (d, $J = 12.8$ Hz, 2H), 3.95-4.10 (m, 4H), 5.67 (d, $J = 48.2$ Hz, 1H), 6.16 (d, $J = 22.4$ Hz, 1H), 7.31 (d, $J = 8.1$ Hz, 2H), 7.61 (d, $J = 8.1$ Hz, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.0 (d, $J = 6.3$ Hz), 38.4 (d, $J = 11.9$ Hz), 62.4 (d, $J = 6.1$ Hz), 110.5, 118.7, 130.0, 132.0 (d, $J = 17.8$ Hz), 132.2, 137.1 (d, $J = 176.4$ Hz), 143.2 (d, $J = 6.3$ Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 18.5; IR (neat): ν (cm$^{-1}$) 3470, 2938, 2895, 2843, 2228, 1770, 1464, 1163, 1024, 972; LC-MS (ESI) [M+H]$^+$: 280.33; HRMS (ESI) calcd for C$_{14}$H$_{18}$NNaO$_3$P $[\text{M+Na}]^+$: 302.0917, found 302.0928.

Ethyl 4-(2-(diethoxyphosphoryl)allyl)benzoate (6j). Pale yellow oil (125.2 mg, 96% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.26 (t, $J = 7.1$ Hz, 6H), 1.39 (t, $J = 7.1$ Hz, 3H), 3.61 (d, $J = 12.3$ Hz, 2H), 3.95-4.11 (m, 4H), 4.37 (q, $J = 7.1$ Hz, 2H), 5.66 (dd, $J = 48.8$ Hz, 1.2 Hz, 1H), 6.16 (dd, $J = 22.7$ Hz, 0.9 Hz, 1H), 7.26 (d, $J = 8.2$ Hz, 2H), 7.99 (d, $J = 8.2$ Hz, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 14.3, 16.1 (d, $J = 6.4$ Hz), 38.2 (d, $J = 12.2$ Hz), 61.0, 62.7 (d, $J = 5.8$ Hz), 129.0, 129.3, 129.8, 132.0 (d, $J = 9.7$ Hz), 137.3 (d, $J = 175.9$ Hz), 142.6 (d, $J = 7.1$ Hz), 166.5; 31P NMR (202.5 MHz, CDCl$_3$): δ 18.3; IR (neat): ν (cm$^{-1}$) 3412, 2938, 2899, 2843, 1717, 1611, 1464, 1277, 1163, 1024, 970; LC-MS (ESI) [M+H]$^+$: 327.40; HRMS (ESI) calcd for C$_{16}$H$_{24}$O$_5$P $[\text{M+H}]^+$: 327.1356, found 327.1356.

Diethyl (3-(2,6-dimethylphenyl)prop-1-en-2-yl)phosphonate (6k). Pale yellow oil (101.5 mg, 90% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.38 (t, $J = 7.1$ Hz, 6H), 2.21 (s, 6H), 3.52 (d, $J = 5.7$ Hz, 2H), 4.10-4.21 (m, 4H), 5.10 (dd, $J = 48.5$ Hz, 1.7 Hz, 1H), 5.96 (dd, $J = 22.7$ Hz, 1.7 Hz, 1H), 7.03-7.09 (m, 3H); 13C NMR (125 MHz, CDCl$_3$): δ 16.4 (d, $J = 6.2$ Hz), 19.6, 31.4 (d, $J = 11.7$ Hz), 61.9 (d, $J = 5.7$ Hz), 126.6, 128.0, 128.2 (d, $J = 9.8$ Hz), 134.0 (d, $J = 11.8$ Hz), 136.7 (d, $J =
171.4 Hz), 137.1; 31P NMR (202.5 MHz, CDCl$_3$): δ 19.4; IR (neat): v (cm$^{-1}$) 3480, 2938, 2895, 2843, 1722, 1464, 1244, 1170, 1024, 964; LC-MS (ESI) [M+H]$^+$/: 283.36; HRMS (ESI) calcd for C$_{15}$H$_{23}$NaO$_3$P [M+Na]$^+$ 305.1277, found 305.1279.

![Structure of Diethyl (3-naphthalen-1-yl)prop-1-en-2-ylphosphonate](image)

Diethyl (3-naphthalen-1-yl)prop-1-en-2-ylphosphonate (6l). Pale yellow oil (119.2 mg, 98% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.36 (t, J = 7.1 Hz, 6H), 3.99 (d, J = 7.8 Hz, 2H), 4.09-4.20 (m, 4H), 5.26 (d, J = 48.4 Hz, 1H), 6.04 (d, J = 22.7 Hz, 1H), 7.35 (d, J = 6.9 Hz, 1H), 7.42-7.49 (m, 3H), 7.78 (d, J = 8.2 Hz, 1H), 7.85-7.89 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.3 (d, J = 6.3 Hz), 35.2 (d, J = 12.0 Hz), 62.0 (d, J = 5.7 Hz), 122.4, 125.4, 125.6, 125.9, 127.6, 128.2, 128.6, 130.3 (d, J = 9.4 Hz), 131.9, 133.6 (d, J = 10.1 Hz), 133.8, 138.2 (d, J = 172.7 Hz), 31P NMR (202.5 MHz, CDCl$_3$): δ 19.1; IR (neat): v (cm$^{-1}$) 3474, 2936, 2900, 2857, 1464, 1242, 1024, 964; LC-MS (ESI) [M+H]$^+$/: 305.14; HRMS (ESI) calcd for C$_{16}$H$_{19}$NaO$_3$P [M+Na]$^+$ 327.1121, found 327.1138.

![Structure of Dipropyl (3-phenylprop-1-en-2-yl)phosphonate](image)

Dipropyl (3-phenylprop-1-en-2-yl)phosphonate (6m). Pale yellow oil (107.2 mg, 95% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.24 (d, J = 6.2 Hz, 6H), 1.32 (d, J = 6.2 Hz, 6H), 3.54 (d, J = 10.4 Hz, 2H), 4.61-4.70 (m, 2H), 5.46 (dd, J = 48.0 Hz, 1.7 Hz, 1H), 6.09 (dd, J = 22.5 Hz, 1.3 Hz, 1H), 7.17-7.31 (m, 5H); 13C NMR (125 MHz, CDCl$_3$): δ 23.7 (d, J = 4.8 Hz), 24.0 (d, J = 3.8 Hz), 38.2 (d, J = 11.4 Hz), 70.5 (d, J = 6.1 Hz), 126.4, 128.4, 129.5, 129.6 (d, J = 9.7 Hz), 137.8 (d, J = 8.2 Hz), 140.6 (d, J = 174.1 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 16.8; IR (neat): v (cm$^{-1}$) 3462, 2936, 2901, 2845, 2359, 1464, 1385, 1252, 1107, 982; GC-MS: m/z (rel intensity) 282 (M$^+$, 10), 240 (21), 198 (100), 181 (26), 163 (25), 116 (94), 91 (21); HRMS (ESI) C$_{16}$H$_{19}$O$_3$PNa [M+Na]$^+$ 305.1277, found 305.1290.

![Diethyl (3-phenylbut-1-en-2-yl)phosphonate](image)

Diethyl (3-phenylbut-1-en-2-yl)phosphonate (7). Pale yellow oil (30.0 mg, 28% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.09 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H), 1.47 (d, J = 7.2 Hz, 3H), 3.63-3.71 (m, 1H), 3.81-3.87 (m, 1H), 3.88-4.01 (m, 3H), 5.88 (dd, J = 48.5 Hz, 1.2 Hz, 1H), 6.21 (d, J = 23.1 Hz, 1H), 7.18-7.23 (m, 3H), 7.27-7.30 (m, 2H); 13C NMR (125 MHz, CDCl$_3$): δ 16.0 (d, J = 7.0 Hz), 16.2 (d, J = 6.5 Hz), 21.3 (d, J = 6.8 Hz), 41.1 (d, J = 11.6 Hz), 61.6 (d, J = 5.5 Hz), 126.4, 127.6, 128.3, 129.1 (d, J = 9.2 Hz), 143.68 (d, J = 4.4 Hz), 143.70 (d, J = 169.7 Hz); 31P NMR (202.5 MHz, CDCl$_3$): δ 19.2; **Diethyl (4-phenylbut-1-en-2-yl)phosphonate (3g).** Pale yellow oil (17.2 mg, 16% yield); 1H NMR (500 MHz, CDCl$_3$): δ 1.34 (t, J = 7.1 Hz, 6H),
2.53-2.59 (m, 2H), 2.83-2.86 (m, 2H), 4.03-4.15 (m, 4H), 5.75 (dd, J = 48.8 Hz, 1.5 Hz, 1H), 6.06 (dd, J = 23.0 Hz, 1.1 Hz, 1H), 7.18-7.23 (m, 3H), 7.27-7.30 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 16.3 (d, J = 6.3 Hz), 33.9 (d, J = 11.1 Hz), 34.3 (d, J = 5.4 Hz), 61.8 (d, J = 5.9 Hz), 126.0, 128.3, 128.4, 129.6 (d, J = 9.5 Hz), 138.5 (d, J = 171.0 Hz), 141.1; \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 19.5; LC-MS (ESI) [M+H]\(^+\): 269.31; IR (neat): \(\nu\) (cm\(^{-1}\)) 3431, 2938, 2897, 2843, 1463, 1247, 1055, 1028, 962; HRMS (ESI) calcd for C\(_{14}\)H\(_{21}\)NaO\(_3\)P [M+Na]\(^+\) 291.1121, found 291.1128.

Diethyl (1,3-diphenylprop-1-en-2-yl)phosphonate (11). Pale yellow oil (128.0 mg, 97% yield); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 1.03 (t, J = 7.1 Hz, 6H), 3.69-3.89 (m, 6H), 7.05 (d, J = 47.9 Hz, 1H), 7.21-7.34 (m, 8H), 7.48 (d, J = 7.4 Hz, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 15.9 (d, J = 6.8 Hz), 42.0 (d, J = 12.1 Hz), 61.5 (d, J = 5.8 Hz), 126.4, 127.7, 128.1, 128.4, 129.1 (d, J = 1.5 Hz), 129.4, 130.5 (d, J = 173.6 Hz), 136.2 (d, J = 7.4 Hz), 138.8 (d, J = 5.3 Hz), 145.0 (d, J = 9.3 Hz); \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 17.4; IR (neat): \(\nu\) (cm\(^{-1}\)) 3420, 2936, 2899, 2843, 2359, 1464, 1240, 1026, 966; GC-MS: m/z (rel intensity) 330 (M\(^+\), 31), 301 (10), 273 (17), 239 (10), 191 (100), 165 (22), 129 (12), 115 (59), 91 (41); HRMS (ESI) C\(_{19}\)H\(_{24}\)O\(_3\)P [M+H]\(^+\) 331.1458, found 331.1446.

Diethyl (1,3-diphenylprop-1-en-2-yl)phosphonate (15). Pale yellow oil (88.4 mg, 67% yield); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 1.15 (t, J = 7.1 Hz, 6H), 3.83-3.92 (m, 4H), 3.98-4.05 (m, 2H), 7.18-7.42 (m, 10H), 7.75 (d, J = 24.8 Hz, 1H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 16.0 (d, J = 6.5 Hz), 33.6 (d, J = 9.2 Hz), 61.7 (d, J = 5.6 Hz), 126.2, 128.2, 128.4, 128.55, 128.6 (d, J = 176.9 Hz), 128.7, 129.0, 135.1 (d, J = 23.2 Hz), 138.2 (d, J = 1.6 Hz), 144.9 (d, J = 12.1 Hz); \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 21.3; IR (neat): \(\nu\) (cm\(^{-1}\)) 3462, 2936, 2902, 2845, 2359, 1464, 1250, 1024, 962; GC-MS: m/z (rel intensity) 330 (M\(^+\), 50), 301 (10), 273 (17), 239 (12), 191 (100), 165 (25), 129 (11), 115 (59), 91 (44); HRMS (ESI) C\(_{19}\)H\(_{24}\)O\(_3\)P [M+H]\(^+\) 331.1458, found 331.1433.

Diethyl (1-bromo-2-methylprop-1-en-1-yl)phosphonate (16a). Pale yellow oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 1.35 (t, J = 7.1 Hz, 6H), 2.09 (d, J = 2.2 Hz, 3H), 2.30 (d, J = 2.9 Hz, 3H), 4.06-4.18 (m, 4H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 16.1 (d, J = 6.6 Hz), 23.3 (d, J = 3.9 Hz), 28.0 (d, J = 13.9 Hz), 62.5 (d, J = 5.4 Hz), 106.5 (d, J = 207.5 Hz), 156.0 (d, J = 17.0 Hz); \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 9.7; IR (neat): \(\nu\) (cm\(^{-1}\)) 3462, 2934, 2903, 2845, 1602, 1464, 1253, 1024, 970;
Diethyl (3-methyl-1-phenylbut-2-en-2-yl)phosphonate (17). Pale yellow oil (104.9 mg, 93% yield); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 1.19 (t, \(J = 7.1\) Hz, 6H), 1.89 (d, \(J = 2.5\) Hz, 3H), 2.23 (d, \(J = 3.3\) Hz, 3H), 3.69 (d, \(J = 17.7\) Hz, 2H), 3.82-3.99 (m, 4H), 7.14-7.27 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 16.1 (d, \(J = 6.4\) Hz), 23.2 (d, \(J = 19.2\) Hz), 23.9 (d, \(J = 7.7\) Hz), 35.8 (d, \(J = 12.0\) Hz), 61.1 (d, \(J = 5.6\) Hz), 122.2 (d, \(J = 178.8\) Hz), 125.8, 128.07, 128.14, 139.7 (d, \(J = 1.8\) Hz), 153.3 (d, \(J = 12.0\) Hz); \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 20.8; IR (neat): \(\nu\) (cm\(^{-1}\)) 3462, 2936, 2899, 2845, 2359, 1464, 1229, 1026, 959; GC-MS: \(m/z\) (rel intensity) 282 (M\(^+\), 63), 253 (10), 225 (15), 191 (13), 157 (10), 143 (88), 129 (100), 115 (18), 91 (34); HRMS (ESI) C\(_{15}\)H\(_{24}\)O\(_3\)P [M+H\(^+\)]: 283.1458, found 283.1448.

Diethyl (8-chlorooctan-2-yl)phosphonate (20f). Colorless oil (62.2 mg, 73% yield). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 1.15 (dd, \(J = 18.7\) Hz, 7.1Hz, 3H), 1.29-1.37 (m, 9H), 1.40-1.48 (m, 3H), 1.72-1.81 (m, 5H), 3.52 (t, \(J = 6.7\) Hz, 2H), 4.05-4.14 (m, 4H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 13.1 (d, \(J = 5.0\) Hz), 16.5 (d, \(J = 5.8\) Hz), 26.6, 27.1 (d, \(J = 13.4\) Hz), 28.6, 29.7 (d, \(J = 3.7\) Hz), 30.6 (d, \(J = 139.9\) Hz), 32.5, 45.0, 61.4 (dd, \(J = 6.7\) Hz, 4.5Hz); \(^{31}\)P NMR (202.5 MHz, CDCl\(_3\)): \(\delta\) 35.0; IR (neat): \(\nu\) (cm\(^{-1}\)) 3462, 2938, 2899, 2843, 1464, 1230, 1056, 1028, 960; LC-MS (ESI) [M+H\(^+\)]: 285.23; HRMS (ESI) C\(_{12}\)H\(_{26}\)ClNaO\(_3\)P [M+Na\(^+\)]: 307.1200, found 307.1202.

References of known compounds

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>

References

1H, 13C, 31P, 19F NMR spectra of new compounds

\[
\begin{align*}
\text{PO(Oi-Pr)$_2$} \\
\text{Cl} \\
\end{align*}
\]

(1f)
PO(OEt)_2 (Et)

CN (3j)

PO(OEt)_2

CN
\begin{align*}
\text{PO}(\text{OE})_2 & \quad (6b) \\
\text{PO}(\text{OE})_2 & \quad \text{Me} \\
\text{PO}(\text{OE})_2 & \quad \text{Me}
\end{align*}
$\text{Et}_2\text{C} - \text{C} = \text{PO(OEt)}_2$
BnPO(OEt)_2

BnPO(O-i-Pr)_2 (6m)
$PO(OE)_2$

Ph Ph

PO(OE)$_2$

Ph Ph
PO(OEt)_2

$\text{Me}_{12} \text{Cl} \; (20f)$
\text{Me} \begin{array}{c}
\text{PO(OEt)_2} \\
\text{Cl}
\end{array}