Supporting information

Photo-Induced C-H Bond Activation of \(N,N'\)-Dialkylethylenediamine upon Aza-Michael Addition to 1,8-Pyrenedione: Facile Synthesis of Fluorescent Pyrene Derivatives

Wei Yao,\(^a\) Mingtai Sun,\(^a\) Yuannian Zhang,\(^a\) Hui Yang,\(^b\) Dong Liang,\(^a\) Haixia Wu,\(^a\) Runyan Ni,\(^c\) Ming Wah Wong,\(^{a,b}\) and Dejian Huang\(^{a,c}\)

\(^a\)Food Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

\(^b\)Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

\(^c\)National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, China 215123

Corresponding author:
Email: chmhdj@nus.edu.sg
Email: chmwmw@nus.edu.sg
Experimental Section

Experiments involving air sensitive components were performed under a positive pressure of nitrogen in glove bag. Silicone gel was degassed in vacuum for 1h. Methanol and dichloromethane were degassed by nitrogen for 1 h. 1H and 13C NMR spectra were recorded in deuterated solvents with a Bruker spectrometer (Karlsruhe, Germany). High resolution ESI-MS spectra were obtained from the microTOF-Q II 1026 mass spectrometer with an ESI source. All solvent used were of reagent grade unless otherwise specified. Sodium bicarbonate was purchased from Sino Chemical Co. Pte Ltd. All chemicals unless indicated were obtained from Sigma Aldrich and used as received.

Synthesis of 1

![Structure of 1]

Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH$_3$CN (100 mL), then 2.0 equiv. N, N'-dimethylethylenediamine (142 µL, 1.30 mmol) was added and then the solution was exposed to air at r. t. 2 h to get a brown solution. The crude product was purified with silica gel column chromatography (EA: hexane = 1:2, v/v) and gave pure compound 1 as a bright yellow powder (0.09 g, 46 %).1H NMR (300 MHz, (CD$_3$)$_2$CO, 293K) δ 7.91 (d, $J = 8.3$ Hz, 2H, Ar–H), 7.86 (s, 2H, Ar–H), 7.46 (d, $J = 8.3$ Hz, 2H, Ar–H), 5.00 (s, 4H, NCH$_2$O), 3.61 (s, 4H, NCH$_2$CH$_2$N). 13C NMR (125 MHz, (CD$_3$)$_2$CO, 293K) δ 149.3, 127.0, 125.8, 123.1, 121.5, 119.3, 113.9, 112.6, 81.4, 44.2. HRMS(ESI-MS) m/z: [M+H]$^+$ Calcd for C$_{20}$H$_{15}$N$_2$O$_2$ 314.1050; Found 314.1054.

Synthesis of 2

![Structure of 2]
Pyrene-1,8-dione (0.10 g, 0.43 mmol) was dissolved in CH$_3$CN (100 mL), then 2.0 equiv. N, N’-dimethylethylenediamine (94 µL, 0.86 mmol) was added and the reaction mixture was stirred in the dark at r. t. for 30 min to get a red solution. The crude product was purified with silica gel column chromatography (CH$_2$Cl$_2$: MeOH = 2:1, v/v) and gave pure product 2 as red powder (0.06 g, 46%). 1H NMR (300 MHz, CD$_3$OD, 293K) δ 7.76 (d, J = 9.4 Hz, 2H, Ar–H), 7.51 (s, 2H, Ar–H), 6.68 (s, J = 9.4 Hz, 2H, Ar–H), 3.99 (s, 4H, NCH$_2$CH$_2$N), 3.06 (s, 3H, NCH$_3$). 13C NMR (75 MHz, CD$_3$OD, 293K) δ 182.2, 151.6, 141.2, 128.8, 127.3, 126.0, 115.8, 108.1, 51.7, 45.2. HRMS(ESI-MS) m/z: [M+H]$^+$ Calcd for C$_{20}$H$_{17}$N$_2$O$_2$ 317.1214; Found 317.1210.

Synthesis of 3

![Structure of 3](image)

Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH$_3$CN (100 mL), then 2.0 equiv. N, N’-dimethylethylenediamine (142 µL, 1.30 mmol) was added. The reaction mixture was stirred in the dark at r. t. for 30 min and then placed under the 254 nm UV lamp for 0.5 h. The crude product was purified with silica gel column chromatography (EA: hexane = 1:2, v/v) and gave product 3 as yellow powder (0.09 g, 42%). 1H NMR (400 MHz, CD$_3$CN, 293K) δ 12.38 (s, 1H, OH), 7.96 (d, J = 8.2 Hz, 1H, Ar–H), 7.84 (d, J = 8.2 Hz, 1H, Ar–H), 7.79 (d, J = 9.2 Hz, 1H, Ar–H), 7.74 (d, J = 9.2 Hz, 1H, Ar–H), 7.43 (d, J = 8.0 Hz, 1H, Ar–H), 7.34 (d, J = 8.0 Hz, 1H, Ar–H), 5.18 (d, J = 6.2 Hz, 1H, NCH$_2$O), 5.00 (d, J = 6.8 Hz, 1H, NCH$_2$O), 3.69 (m, 2H, NCH$_2$CH$_2$N), 3.47 (m, 2H, NCH$_2$CH$_2$N), 2.83 (s, 3H, NCH$_3$). 13C NMR (75 MHz, CD$_3$CN, 293K) δ 153.6, 149.6, 129.5, 127.5, 126.7, 125.9, 125.6, 125.5, 124.5, 124.4, 124.3, 124.2, 124.2, 123.3, 120.7, 115.8, 114.6, 114.2, 80.3, 48.8, 46.0, 37.5. EI-MS m/z: [M]$^+$ Calcd for C$_{20}$H$_{16}$N$_2$O$_2$ 316.3; Found 316.3.

Synthesis of 4
Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH₃CN (100 mL), then 2.0 equiv. N, N’-diethylethlenediamine (186 µL, 1.30 mmol) was added and the reaction mixture was stirred at r.t. for 12 h to get a brown solution. The crude product was purified with silica gel column chromatography (EA: hexane = 1:10, v/v) and gave compound 4 as yellow powder (0.14 g, 62%).

\(^1\)H NMR (300 MHz, (CD₃)₂CO, 293K)
\(\delta\) 7.89 (dd, \(J = 8.3, 2.0\) Hz, 2H, Ar–H), 7.83 (d, \(J = 1.5\) Hz, 2H, Ar–H), 7.41 (dd, \(J = 8.3, 0.9\) Hz, 2H, Ar–H), 5.09 (q, \(J = 5.6\) Hz, 1H, CHCH₃), 4.74 (q, \(J = 5.5\) Hz, 1H, CHCH₃), 3.81–3.64 (m, 2H, NCH₂CH₂N), 3.58–3.39 (m, 2H, NCH₂CH₂N), 1.72 (d, \(J = 5.5\) Hz, 3H, C₃H₃), 1.57 (d, \(J = 5.6\) Hz, 3H, C₃H₃).

\(^{13}\)C NMR (75 MHz, (CD₃)₂CO, 293K) \(\delta\) 148.0, 126.8, 125.7, 123.2, 123.1, 114.1, 113.7, 87.2, 86.3, 44.6, 44.4, 19.4, 17.3. HRMS(ESI-MS) m/z: [M+H]^+ Calcd for C₂₂H₁₉N₂O₂ 343.1361; Found 343.1422.

Synthesis of 5

Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH₃CN (100 mL), then 2.0 equiv. [2-(Hydroxymethyl-amino)-ethylamino]-methanol (190 µL, 1.30 mmol) was added and the reaction mixture was stirred at r.t. for 12 h to get a brown solution. The crude product was purified with silica gel column chromatography (EA) and gave compound 5 as yellow powder (0.16 g, 68%).

\(^1\)H NMR (400 MHz, (CD₃)₂CO, 293K)
\(\delta\) 7.90 (dd, \(J = 8.2, 7.6\) Hz, 2H, Ar–H), 7.84 (d, \(J = 4.9\) Hz, 2H, Ar–H), 7.45 (d, \(J = 2.6\) Hz, 1H, Ar–H), 7.43 (d, \(J = 2.6\) Hz, 1H, Ar–H), 5.01 (dd, \(J = 4.9, 3.9\) Hz, 1H, CHCH₂OH), 4.76 (t, \(J = 3.4\) Hz, 1H, CHCH₂OH), 4.23–4.11 (m, 4H, CHCH₂OH), 4.07–3.87 (m, 4H, NCH₂CH₂N).

\(^{13}\)C NMR (75 MHz, (CD₃)₂SO, 293K) \(\delta\) 147.6, 146.4,
Synthesis of 6 and 6’

Pyrene-1,8-dione (0.10 g, 0.43 mmol) was dissolved in CH₃CN (50 mL), then 2.0 equiv. N,N’-dibenzylethylenediamine (0.21 g, 0.86 mmol) was added and the reaction mixture was stirred at r.t. for 24 h to get a yellow solution. The crude product was purified with silica gel column chromatography (EA: hexane = 1:10, v/v) and gave yellow compound 6 as yellow powder (0.07 g, 35 %). ¹H NMR (300 MHz, (CD₃)₂CO, 293K) δ 7.95 (d, J = 8.3 Hz, 2H, Ar–H), 7.90 (s, 2H, Ar–H), 7.63–7.55 (m, 4H, Ar–H), 7.45 (m, 8H, Ar–H), 5.85 (s, 2H, OCHAr), 3.26 (s, 4H, NCH₂). ¹³C NMR (75 MHz, (CD₃)₂CO, 293K) δ 150.0, 137.6, 130.8, 129.6, 129.4, 127.1, 125.9, 123.6, 121.7, 120.8, 114.1, 112.6, 92.3, 45.3. HRMS(ESI-MS) m/z: [M+H]⁺ Calcd for C₃₂H₂₃N₂O₂ 467.1754; Found 467.1756.

The crude product was purified with silica gel column chromatography (EA/hexane = 1/5) and gave yellow compound 6’ as yellow powder (0.06 g, 30 %). ¹H NMR (300 MHz, (CD₃)₂CO, 293K) δ 7.88 (d, J = 8.3 Hz, 2H, Ar–H), 7.81 (s, 2H, Ar–H), 7.61 (m, 4H, Ar–H), 7.42 (m, 6H, Ar–H), 7.38 (d, J = 8.3 Hz, 2H, Ar–H), 5.48 (s, 2H, OCHAr),
3.19 (t, \(J = 7.5 \) Hz, 2H, NCH\(_2\)), 2.84 (t, \(J = 7.5 \) Hz, 2H, NCH\(_2\)). \(^{13}\)C NMR (75 MHz, (CD\(_3\))\(_2\)CO, 293K) \(\delta \) 150.0, 148.7, 138.2, 137.6, 130.8, 130.4, 129.6, 129.6, 129.4, 129.1, 127.1, 125.9, 123.6, 123.4, 114.2, 114.1, 112.6, 92.3, 91.2, 45.3, 45.0. HRMS(ESI-MS) m/z: [M+H]\(^+\) Calcd for C\(_{32}\)H\(_{23}\)N\(_2\)O\(_2\) 467.1754; Found 467.1756.

Synthesis of 7 and 7’

Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH\(_3\)CN (100 mL), then 2.0 equiv. N, N’-dimethylcyclohexyldiamine (86 µL, 1.30 mmol) was added and the reaction mixture was stirred at r.t. for 12 h to get a brown solution. The crude product was purified with silica gel column chromatography (EA : hexane = 1:10, v/v) and gave compound 7’ as yellow powder (0.15 g, 63%). \(^1\)H NMR (400 MHz, CD\(_3\)CN, 293K) \(\delta \) = 12.64 (s, 1H, O\(_2\)H), 7.96 (d, \(J = 8.4 \) Hz, 1H, Ar–H), 7.84 (d, \(J = 8.3 \) Hz, 1H, Ar–H), 7.79 (d, \(J = 8.9 \) Hz, 1H, Ar–H), 7.73 (d, \(J = 8.9 \) Hz, 1H, Ar–H), 7.42 (d, \(J = 8.4 \) Hz, 1H, Ar–H), 7.33 (d, \(J = 8.3 \) Hz, 1H, Ar–H), 5.41 (d, \(J = 7.3 \) Hz, 1H, NCH\(_2\)O), 4.93 (d, \(J = 7.3 \) Hz, 1H, NCH\(_2\)O), 3.40–3.28 (m, 2H, NCH\(_3\)CH\(_2\)), 2.69 (s, 3H, CH\(_3\)), 2.60 (d, \(J = 9.2 \) Hz, 1H, NCH\(_2\)CH\(_2\)), 1.85 (d, \(J = 8.6 \) Hz, 1H, NCH\(_2\)CH\(_2\)), 1.79–1.66 (m, 2H, NCH\(_2\)CH\(_2\)), 1.54–1.33 (m, 4H, CH\(_2\)CH\(_2\)). \(^{13}\)C NMR (75 MHz, (CD\(_3\))\(_2\)SO, 293K) \(\delta \) 152.3, 148.5, 129.0, 126.0, 125.5, 124.6, 124.0, 123.2, 123.1, 122.4, 121.6, 114.7, 113.1, 112.9, 111.7, 75.5, 60.1, 47.4, 29.3, 24.8, 23.5. HRMS(ESI-MS) m/z: [M+H]\(^+\) Calcd for C\(_{24}\)H\(_{23}\)N\(_2\)O\(_2\) 371.1516; Found 371.1516.

Compound 7’ (0.010 g, 0.027 mmol) was dissolved in CD\(_3\)CN (0.6 mL), then exposed
to room light for 20 hours at r. t. to get a bright yellow solution. The pure compound 7 was obtained (0.009 g, 90%). 1H NMR (300 MHz, (CD$_3$)$_2$CO, 293K) δ 7.86 (d, $J = 8.1$ Hz, 2H, Ar–H), 7.82 (s, 2H, Ar–H), 7.45 (d, $J = 8.3$ Hz, 2H, Ar–H), 5.45 (d, $J = 6.3$ Hz, 2H, NCH$_2$O), 4.56 (d, $J = 6.3$ Hz, 2H, NCH$_2$O), 3.11 (s, 2H, NCHCHN), 2.47 – 2.37 (m, 2H, NCH$_2$CH$_2$), 1.98–1.87 (m, 2H, CH$_2$CH$_2$), 1.47 (d, $J = 4.8$ Hz, 2H, CH$_2$CH$_2$). HRMS(ESI-MS) m/z: [M+H]$^+$ Calcd for C$_{24}$H$_{21}$N$_2$O$_2$ 369.1514; Found 369.1564.

Synthesis of 8

The HOCDDMEA (0.01 g, 0.02 mmol) was dissolved in CDCl$_3$ (0.5 mL) and then placed under the 254 nm UV lamp for 20 h to give clean transformation to product 8 as orange powder (0.01 g, 100%). 1H NMR (400 MHz, CDCl$_3$, 293K) δ 9.10 (d, $J = 8.8$ Hz, 2H, Ar–H), 9.06 (dd, $J = 6.3$, 3.5 Hz, 2H, Ar–H), 8.31 (s, 2H, Ar–H), 7.63 (dd, $J = 6.3$, 3.4 Hz, 2H, Ar–H), 7.55 (d, $J = 8.0$ Hz, 2H, Ar–H), 5.08 (s, 4H, OCH$_2$N), 3.62 (s, 2H, NCH$_2$CH$_2$N), 2.69 (s, 6H, PhCH$_3$). HRMS(ESI-MS) m/z: [M+H]$^+$ Calcd for C$_{34}$H$_{25}$N$_2$O$_2$ 492.1832; Found 492.1835.

Synthesis of compound 9

Pyrene-1,8-dione (0.15 g, 0.65 mmol) was dissolved in CH$_3$CN (100 mL), then 2.0 equiv. ethylenediamine (86 µL, 1.30 mmol) was added and the reaction mixture was
stirred at r.t. for 12 h to get a red solution. The crude product was purified with silica gel column chromatography (EA) and gave red compound 9 as red powder (0.10 g, 67%). \(^1\)H NMR (300 MHz, CDCl\(_3\), 293K) \(\delta\) 12.56 (s, 2H, NH), 7.77 (d, \(J = 9.5\) Hz, 2H, Ar–H), 7.56 (s, 2H, Ar–H), 6.84 (d, \(J = 9.5\) Hz, 2H, Ar–H), 3.90 (s, 4H, CH\(_2\)). \(^{13}\)C NMR (75 MHz, CDCl\(_3\), 293K) \(\delta\) 185.7, 146.2, 140.5, 128.0, 126.1, 125.5, 121.2, 108.0, 38.3. HRMS(ESI-MS) m/z: [M+Na]\(^+\) Calcd for C\(_{18}\)H\(_{12}\)N\(_2\)O\(_2\)Na 311.0804; Found 311.0791.

Synthesis of compound 10

The reaction of Pyrene-1,8-dione (8 mg, 0.034 mmol) and N-methylethylenediamin (6 \(\mu\)L, 0.068 mmol) was monitored by \(^1\)H NMR spectrum in CD\(_3\)CN. The reaction mixture was stirred at r. t. for 30 min to get a brown solution. \(^1\)H NMR (300 MHz, CD\(_3\)CN, 293K) \(\delta\) 7.63 (dd, \(J = 13.6, 4.7\) Hz, 2H, Ar–H), 7.43 (s, 2H, Ar–H), 7.10 (d, \(J = 8.6\) Hz, 1H, Ar–H), 7.03 (d, \(J = 8.6\) Hz, 1H, Ar–H), 4.73 (d, \(J = 3.9\) Hz, 1H, ArCHNCH\(_3\)), 3.98 (d, \(J = 3.9\) Hz, 1H, ArCHNH), 3.27 (s, 3H NCH\(_2\)CH\(_2\)NCH\(_3\)), 2.92 (t, \(J = 1.8\) Hz, 2 H, NCH\(_2\)CH\(_2\)NCH\(_3\)), 2.90 (t, \(J = 1.8\) Hz, 2H, NCH\(_2\)CH\(_2\)NCH\(_3\)). HRMS(ESI-MS) m/z: [M+H]\(^+\) Calcd for C\(_{19}\)H\(_{19}\)N\(_2\)O\(_2\) 307.1441; Found 307.1448. The brown solution was placed under the 254 nm UV lamp for 20 h to give clean transformation to product 9 as red solution.

Determination of fluorescence quantum yield of synthesized compounds.

Fluorescence quantum yields of compounds 1, 4, 5, 6, 7, and 9 were calculated using the following equation.

\[
\Phi_F = \frac{\text{Abs}_{\text{standard}} \cdot \frac{\Sigma F_{\text{sample}}}{\Sigma F_{\text{standard}}} \cdot \eta^2_{\text{sample}}}{\text{Abs}_{\text{sample}}} \cdot \frac{\Sigma F_{\text{sample}}}{\Sigma F_{\text{standard}}} \cdot \eta^2_{\text{standard}}
\]

So,

\[
\Phi_{F_{\text{sample}}} = \frac{\text{Slope}_{\text{sample}}}{\text{Slope}_{\text{standard}}} \cdot \frac{\eta^2_{\text{sample}}}{\eta^2_{\text{standard}}}
\]

Where \(\Phi_F\) stands for fluorescence quantum yields; Abs and \(\Sigma F\) denote the absorbance...
at the excitation wavelength and the measured integrated fluorescence intensity, and η is the refractive index of the solvent used. Fluorescein ($\Phi_F = 0.95$) in 0.1 M NaOH solution was selected as standards.

Figures and Tables

![NMR spectra](image)

Figure S1. NMR spectra of the reaction of Pyrene-1,8-dione with N,N’-dimethylethylenediamine in the different conditions (solvent: CD$_3$CN).

2. **Spectral data of 1-10**
Figure S2. 1H NMR spectrum of compound 1

Figure S3. 13C NMR spectrum of compound 1
Figure S4. DEPT spectrum of compound 1

Figure S5. 1H NMR spectrum of compound 2
Figure S6. 13C NMR spectrum of compound 2.

Figure S7. 1H NMR spectrum of compound 3
Figure S8. 13C NMR spectrum of compound 3

Figure S9. 1H NMR spectrum of compound 4
Figure S10. 13C NMR spectrum of compound 4

Figure S11. 1H NMR spectrum of compound 5
Figure S12. 1H NMR spectrum of compound 6

Figure S13. 1C NMR spectrum of compound 5
Figure S14. 13C NMR spectrum of compound 6

Figure S15. 1H NMR spectrum of compound 6'
Figure S16. 13C NMR spectrum of compound $6'$

Figure S17. 1H NMR spectrum of compound $7'$ (solvent: CD$_3$CN).
Figure S18. 13C NMR spectrum of compound 7′.

Figure S19. 1H NMR spectrum of compound 7 (solvent: CD$_3$CN).
Figure S20. 1H NMR spectrum of compound 8 (CDCl$_3$).

Figure S21. 1H NMR spectrum of compound 9 (Solvent CDCl$_3$)
Figure S22. 13C NMR spectrum of compound 9

Figure S23. 1H NMR spectrum of compound 10
Figure S24. NMR spectra of reaction mixture of compound 3 and NaOH in the different conditions. (NaOH was dissolved in D$_2$O, Solvent: CD$_3$CN).

Figure S25. NMR spectra of compound HOC(D), which was exposed to the different conditions.
Figure S26. The molecular structure of compound 7. Thermal ellipsoids are shown at the 30% probability level.
Figure S27. The molecular structure of complex 9. Thermal ellipsoids are shown at the 30% probability level.

Figure S28. UV-Vis spectra of 1, 4, 5, 6, 7 in methanol. (100 μmol/L)
Figure S29. Fluorescence spectra of 1, 4, 5, 6, 7 in methanol. (10 μmol/L, $\lambda_{ex} = 380$ nm).

Figure S30. Fluorescence emission spectra of compound 6 (5 μM) in different solvents. Excitation wavelength was 400 nm.
Table S-1. The absorbance and fluorescence spectra data of compound 6 at 5×10^{-6} M in Different Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Dielectric constant (ε)</th>
<th>Absorption λ_{abs} (nm)</th>
<th>Emission λ_{em} (nm)</th>
<th>Stokes shift (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentane</td>
<td>1.84</td>
<td>393</td>
<td>440</td>
<td>47</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.89</td>
<td>393</td>
<td>441</td>
<td>48</td>
</tr>
<tr>
<td>Et$_2$O</td>
<td>4.33</td>
<td>395</td>
<td>464</td>
<td>69</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.38</td>
<td>396</td>
<td>468</td>
<td>68</td>
</tr>
<tr>
<td>DCM</td>
<td>8.93</td>
<td>397</td>
<td>483</td>
<td>86</td>
</tr>
<tr>
<td>EA</td>
<td>6.02</td>
<td>396</td>
<td>484</td>
<td>88</td>
</tr>
<tr>
<td>THF</td>
<td>7.58</td>
<td>396</td>
<td>484</td>
<td>88</td>
</tr>
<tr>
<td>Acetone</td>
<td>20.7</td>
<td>397</td>
<td>491</td>
<td>94</td>
</tr>
<tr>
<td>MeOH</td>
<td>32.7</td>
<td>392</td>
<td>497</td>
<td>105</td>
</tr>
<tr>
<td>ACN</td>
<td>37.5</td>
<td>396</td>
<td>506</td>
<td>100</td>
</tr>
<tr>
<td>DMF</td>
<td>36.7</td>
<td>400</td>
<td>509</td>
<td>109</td>
</tr>
<tr>
<td>DMSO</td>
<td>46.7</td>
<td>402</td>
<td>516</td>
<td>114</td>
</tr>
</tbody>
</table>
Figure S31. Fluorescence emission spectra of compound 6 at different concentrations (0.5 μM-20 μM) in acetonitrile.

Figure S32. Fluorescence emission spectra of compound 4 (left, 5 μM) and compound 6 (right, 5 μM) in mixed solvents containing different amounts of water.