Supporting Information

Decarboxylative Formylation of Aryl Halides with Glyoxylic Acid by Merging Organophotoredox with Palladium Catalysis

Bin Zhao, Rui Shang,* Wan-Min Cheng, and Yao Fu*

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China.

rui@chem.s.u-tokyo.ac.jp; fuyao@ustc.edu.cn
Table of Contents

1. General Information ... S3

2. Preparation of Photocatalyst S3-S4

3. Investigation of the Key Reaction Parameters S4-S8

4. Experimental Procedures and Spectral Data S8-S20

5. NMR Spectra .. S21-S56
1. General Information

All reactions were carried out in oven-dried Schlenk tubes under argon atmosphere (purity ≥ 99.999%) unless otherwise mentioned. Commercial reagents were purchased from Adamas-beta, TCI and Aldrich. Organic solutions were concentrated under reduced pressure on Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).

1H-NMR, 19F-NMR and 13C-NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Data for 1H-NMR are reported as follows: chemical shift (ppm, scale), multiplicity ($s =$ singlet, $d =$ doublet, $t =$ triplet, $q =$ quartet, $m =$ multiplet and/or multiplet resonances, $br =$ broad), coupling constant (Hz), and integration. Data for 13C-NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constant (Hz). HRMS analysis was performed on Finnigan LCQ advantage Max Series MS System. ESI-mass data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software.

2. Preparation of Photocatalyst (4CzIPN)

\[
\text{4,4 equiv} \quad \text{NaHMDS (4.2 equiv)} \quad \text{THF, 0 °C to r.t. 45 min} \quad \text{4CzIPN}
\]

2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN)

A 100 mL Schlenk tube containing a stirring bar was charged with carbazole (6.43 g, 38.5 mmol, 4.4 equiv). The tube was then evacuated and back-filled with argon three times. Anhydrous Tetrahydrofuran (THF, 77 mL) was added subsequently,
and the solution was cooled to 0 °C. The flask was then charged with NaHMDS in THF (2 M, 18.4 mL, 36.7 mmol, 4.2 equiv) by syringe, resulting in an orange-brown solution. After 5 min, the solution was warmed to room temperature and stirred for 30 min. The flask was then charged with tetrafluoroisophthalonitrile (1.75 g, 8.75 mmol, 1.0 equiv) and equipped with a reflux condenser. The solution was heated at 65 °C under the Ar atmosphere and allowed to stir at this temperature for 72 h. During this time, the solution became a very dark brown with a voluminous yellow precipitate. After the 72 h, the flask was cooled to the room temperature and the contents of the flask were poured into a medium porosity fritted glass funnel. After the solids and liquid were separated, the solids were washed with Et₂O (350 mL) to remove the residual carbazole. The filtrate was discarded, and the solid was then washed with CHCl₃ (600 mL), to which 4CzIPN has partial solubility. The bright yellow filtrate was collected and the solvent was removed in vacuo by rotary evaporation. The compound (6.37 g, 92%) was obtained as a bright yellow solid. The compound data was in agreement with the literature (Nature 2012, 492, 234–238).

1H NMR (400 MHz, CDCl₃) δ 8.22 (d, $J = 7.7$ Hz, 2H), 7.77 – 7.64 (m, 8H), 7.48 (t, $J = 7.0$ Hz, 2H), 7.32 (d, $J = 7.5$ Hz, 2H), 7.25 – 7.18 (m, 4H), 7.13 – 7.02 (m, 8H), 6.82 (t, $J = 8.1$ Hz, 4H), 6.62 (t, $J = 7.5$ Hz, 2H).

13C NMR (101 MHz, CDCl₃) δ 145.2, 144.62, 134.0, 138.2, 137.0, 134.8, 127.0, 125.8, 125.0, 124.8, 124.5, 123.9, 122.4, 121.9, 121.4, 121.0, 120.4, 119.7, 116.4, 111.6, 110.0, 109.5, 109.4.

3. Investigation of the Key Reaction Parameters

3.1 Control experiment

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variation</th>
<th>Conv.a (%)</th>
<th>Yield.a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>>99</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>without 4CzIPN</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>without Pd(Xantphos)Cl₂</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

S4
Reaction condition: 4-iodotoluene (0.2 mmol), Glyoxylic acid monohydrate (0.3 mmol) (Glyoxylic acid monohydrate was lyophilized in a lyophilizer for 24 hours), 4CzIPN (5 mol %), Pd(Xantphos)Cl$_2$ (5 mol %), CsOAc (150 mol %), DMF (2 mL), irradiation by 36W Blue-LEDS at room temperature for 10 h under Ar atomphere. *GC yields using diphenyl as an internal standard.

3.2 Optimize the reaction conditions

3.2.1 Screening of Photoredox Catalyst

<table>
<thead>
<tr>
<th>Entry</th>
<th>Photoredox catalyst</th>
<th>Conv.a (%)</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ir(df(CF$_3$)ppy)$_2$(dtbbpy)</td>
<td>86</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>Ir(ppy)$_2$(dtbbpy)PF$_6$</td>
<td>>99</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>4CzIPN</td>
<td>>99</td>
<td>71</td>
</tr>
<tr>
<td>4b</td>
<td>Ir(df(CF$_3$)ppy)$_2$(dtbbpy)</td>
<td>80</td>
<td>7</td>
</tr>
</tbody>
</table>

*GC yields using diphenyl as an internal standard. b Using Pd(PPh$_3$)$_2$Cl$_2$ (5 mol %) and Xantphos (6 mol %) instead of Pd(xantphos)Cl$_2$ (5 mol %).

3.2.2 Screening of Solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variations from above conditions</th>
<th>Conv.a (%)</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>>99</td>
<td>71</td>
</tr>
</tbody>
</table>

S5
2. THF instead of DMF >90 trace
3. Dioxane instead of DMF >90 trace
4. MeCN instead of DMF >90 trace
5. EtOAc instead of DMF >90 trace
6. DCM instead of DMF >90 trace
7. Toluene instead of DMF >90 trace
8. Acetone instead of DMF >90 trace
9. DMSO instead of DMF 98 22
10. NMP instead of DMF >99 61
11. DMA instead of DMF >99 60
12. Add to 1 equiv H₂O 99 61
13. Add to 5 equiv H₂O 68 5

*GC yields using diphenyl as an internal standard.

3.2.3 Screening of Ligand

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variations from above conditions</th>
<th>Conv. (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>>99</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Pd(PhCN)₂Cl₂/Xantphos (1:1) instead of Pd(Xantphos)Cl₂</td>
<td>97</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Pd(PhCN)₂Cl₂/1,10-Phen (1:1) instead of Pd(Xantphos)Cl₂</td>
<td>35</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>Pd(PhCN)₂Cl₂/dCype (1:1) instead of Pd(Xantphos)Cl₂</td>
<td>30</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>Pd(PhCN)₂Cl₂/dppp (1:1) instead of Pd(Xantphos)Cl₂</td>
<td>58</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>Pd(PhCN)₂Cl₂/PPh₃ (1:2) instead of Pd(Xantphos)Cl₂</td>
<td>54</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>Pd(PhCN)₂Cl₂/PCy₃ (1:2) instead of Pd(Xantphos)Cl₂</td>
<td>49</td>
<td>trace</td>
</tr>
</tbody>
</table>

*GC yields using diphenyl as an internal standard. Xantphos = 4,5-Bis(diphenylphosphino)-9,9-diMethylxanthene, 1,10-Phen = 1,10-Phenanthroline, dCype = 1,2-Bis(dicyclohexylphosphino)ethane, dppp = 1,3-Bis(diphenylphosphino)propane, PPh₃ = Triphenylphosphine, PCy₃ = Tricyclohexyl phosphine.

3.2.4 Screening of Base

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variations from above conditions</th>
<th>Conv. (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>>99</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Cs₂CO₃ instead of CsOAc</td>
<td>75</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>K₂HPO₄ instead of CsOAc</td>
<td>38</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>KOAC instead of CsOAc</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>KHCO₃ instead of CsOAc</td>
<td>74</td>
<td>35</td>
</tr>
</tbody>
</table>
6 K_2CO_3 instead of CsOAc 71 29
7 Et$_3$N instead of CsOAc 62 16

*GC yields using diphenyl as an internal standard.

3.2.5 Screening of Solution Concentration

\[\text{Reactor condition: 4-iodotoluene (0.2 mmol), Glyoxylic acid monohydrate (0.3 mmol), 4CzIPN (5 mol %), Pd(Xantphos)Cl$_2$ (5 mol %), CsOAc (150 mol %), DMF (2 mL), irradiation by 36W Blue-LEDs at room temperature for 10 h under Ar atomphere.} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Variations from standard conditions</th>
<th>Conv.a (%)</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>>99</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>DMF (1 mL)</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>DMF (3 mL)</td>
<td>89</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>Glyoxylic acid (0.2 mmol)</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Glyoxylic acid (0.4 mmol)</td>
<td>>99</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Glyoxylic acid (0.5 mmol)</td>
<td>>99</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>CsOAc (0.2 mmol)</td>
<td>86</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>CsOAc (0.4 mmol)</td>
<td>>99</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>CsOAc (0.5 mmol)</td>
<td>>99</td>
<td>65</td>
</tr>
</tbody>
</table>

4. Experimental Procedures and Spectral Data

4.1 Experimental procedures

General Procedure for Decarboxylative Formylation

A 10 mL Schlenk tube containing a stirring bar was charged with aryl halide (1.0 equiv, 0.2 mmol), Glyoxylic acid monohydrate (1.5 equiv, 0.3 mmol, 27.6 mg), 4CzIPN (5 mol %, 7.9 mg), Pd(Xantphos)Cl$_2$ (5 mol %, 7.6 mg) and CsOAc (1.5 equiv, 0.3 mmol, 57.6 mg). The tube was then evacuated and back-filled with argon three times. Anhydrous N,N-Dimethylformamide (DMF, 2.0 mL) was added subsequently. The reaction mixture was stirred under the irradiation of a 36 W Blue LEDs (distance app. 1.0 cm from the bulb) at 30-35 °C for 10 h. After reaction
completed, the mixture was quenched with saturated NaCl solution and extracted with ethyl acetate (3 x 10 mL). The organic layers were combined and concentrated under vacuo. The product was purified by flash column chromatography on silica gel with petroleum ether / ethyl acetate.

4.2 Spectral Data

4-methylbenzaldehyde (1): Following the general procedure, obtained in 78% yield as colorless liquid after silica gel chromatography. (18.7 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 9.96 (s, 1H), 7.78 (d, $J = 7.8$ Hz, 2H), 7.33 (d, $J = 7.8$ Hz, 2H), 2.44 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 192.0, 145.6, 134.2, 129.9, 129.7, 21.9.

3,5-dimethylbenzaldehyde (2): Following the general procedure, obtained in 75% yield as colorless liquid after silica gel chromatography. (20.1 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 3492–3495).

1H NMR (400 MHz, CDCl$_3$) δ 9.95 (s, 1H), 7.49 (s, 2H), 7.26 (s, 1H), 2.39 (s, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 192.8, 138.8, 136.6, 136.2, 127.6, 21.1.

4-(tert-butyl)benzaldehyde (3): Following the general procedure, obtained in 80% yield as colorless liquid after silica gel chromatography. (25.9 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature
4-fluorobenzaldehyde (4): Following the general procedure, obtained in 61% yield as colorless liquid after silica gel chromatography. (15.1 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 9.97 (s, 1H), 7.98 – 7.85 (m, 2H), 7.26 – 7.16 (m, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 190.5, 166.5 (d, $J = 256.7$ Hz), 132.8 (d, $J = 9.5$ Hz), 132.2 (d, $J = 9.7$ Hz), 116.4 (d, $J = 22.3$ Hz).

19F NMR (376 MHz, CDCl$_3$) δ -102.4.

4-chlorobenzaldehyde (5): Following the general procedure, obtained in 62% yield as colorless liquid after silica gel chromatography. (17.4 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 9.99 (s, 1H), 7.83 (d, $J = 8.1$ Hz, 2H), 7.52 (d, $J = 8.1$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 190.9, 141.0, 134.7, 130.9, 129.5.

4-bromobenzaldehyde (6): Following the general procedure, obtained in 64% yield as white solid after silica gel chromatography. (23.6 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 390–393.)
1H NMR (400 MHz, CDCl$_3$) δ 9.98 (s, 1H), 7.75 (d, $J = 8.1$ Hz, 2H), 7.69 (d, $J = 8.1$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 191.1, 135.1, 132.5, 131.0, 129.8.

4-methoxybenzaldehyde (7): Following the general procedure, obtained in 60% yield as light yellow liquid after silica gel chromatography. (16.3 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (*Chem. Commun.*, 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 9.89 (s, 1H), 7.84 (d, $J = 7.6$ Hz, 2H), 7.00 (d, $J = 7.6$ Hz, 2H), 3.89 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 190.9, 164.6, 132.0, 129.9, 114.3, 55.6.

3-chlorobenzaldehyde (8): Following the general procedure, obtained in 65% yield as colorless liquid after silica gel chromatography. (18.2 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (*Org. Lett.*, 2017, 19, 1646–1649).

1H NMR (400 MHz, CDCl$_3$) δ 9.98 (s, 1H), 7.86 (s, 1H), 7.77 (d, $J = 7.6$ Hz, 1H), 7.61 (d, $J = 7.9$ Hz, 1H), 7.49 (t, $J = 7.8$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 190.9, 137.8, 135.5, 134.4, 130.4, 129.3, 128.0.

3-formylbenzonitrile (9): Following the general procedure, obtained in 87% yield as light yellow solid after silica gel chromatography. (22.8 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (*Org. Lett.*, 2014, 16, 390–393).

1H NMR (400 MHz, CDCl$_3$) δ 10.06 (s, 1H), 8.18 (s, 1H), 8.13 (d, $J = 7.8$ Hz, 1H), 7.92 (d, $J = 7.7$ Hz, 1H), 7.71 (t, $J = 7.7$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 190.0, 137.3, 136.8, 133.4, 133.2, 130.2, 117.6, 113.7.
4-formylbenzonitrile (10): Following the general procedure, obtained in 67% yield as white solid after silica gel chromatography. (17.6 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 8.01 (d, $J = 8.0$ Hz, 2H), 7.86 (d, $J = 8.0$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 190.6, 138.7, 132.9, 129.9, 117.7, 117.6.

4-formylbenzonitrile (11): Following the general procedure, obtained in 68% yield as white solid after silica gel chromatography. (17.8 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 8.01 (d, $J = 8.0$ Hz, 2H), 7.86 (d, $J = 8.0$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 190.6, 138.7, 132.9, 129.9, 117.7, 117.6.

4-(trifluoromethyl)benzaldehyde (12): Following the general procedure, obtained in 73% yield as colorless liquid after silica gel chromatography. (25.4 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Angew. Chem. Int. Ed., 2014, 53, 10090–10094).

1H NMR (400 MHz, CDCl$_3$) δ 10.11 (s, 1H), 8.02 (d, $J = 8.0$ Hz, 2H), 7.82 (d, $J = 8.0$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 191.1, 138.6, 135.6 (q, $J = 32.8$ Hz), 129.9, 126.1 (q, $J = 3.8$ Hz), 123.4 (q, $J = 272.9$ Hz).

19F NMR (376 MHz, CDCl$_3$) δ -63.2.
4-(methylsulfonyl)benzaldehyde (13): Following the general procedure, obtained in 62% yield as white solid after silica gel chromatography. (22.8 mg, eluent: petroleum ether/ethyl acetate = 5/1). The compound data was in agreement with the literature (Angew. Chem. Int. Ed., 2017, 56, 1500–1505).

1H NMR (400 MHz, CDCl$_3$) δ 10.11 (s, 1H), 8.11 (d, J = 8.1 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 2.67 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 197.4, 191.6, 141.2, 139.1, 129.8, 128.8, 27.0.

[1,1'-biphenyl]-4-carbaldehyde (14): Following the general procedure, obtained in 81% yield as white solid after silica gel chromatography. (29.5 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 10.06 (s, 1H), 8.02 – 7.91 (m, 2H), 7.78 – 7.72 (m, 2H), 7.67 – 7.61 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.38 (m, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 192.0, 147.2, 139.7, 135.2, 130.3, 129.0, 128.5, 127.7, 127.4.

Terephthalaldehyde (15): Following the general procedure, obtained in 83% yield as white solid after silica gel chromatography. (22.2 mg, eluent: petroleum ether/ethyl acetate = 10/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 10.14 (s, 2H), 8.06 (s, 4H).

13C NMR (101 MHz, CDCl$_3$) δ 191.5, 140.0, 130.1.
4-acetylbenzaldehyde (16): Following the general procedure, obtained in 84% yield as white solid after silica gel chromatography. (24.5 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 3492–3495).

1H NMR (400 MHz, CDCl$_3$) δ 10.12 (s, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 2.67 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 197.4, 191.7, 141.2, 139.0, 129.8, 128.8, 27.0.

4-acetylbenzaldehyde (17): Following the general procedure, obtained in 63% yield as white solid after silica gel chromatography. (18.6 mg, eluent: petroleum ether/ethyl acetate = 25/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 3492–3495).

1H NMR (400 MHz, CDCl$_3$) δ 10.12 (s, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 2.67 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 197.4, 191.7, 141.2, 139.0, 129.8, 128.8, 27.0.

4-nitrobenzaldehyde (18): Following the general procedure, obtained in 62% yield as colorless liquid after silica gel chromatography. (18.7 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 10.17 (s, 1H), 8.41 (d, J = 8.3 Hz, 2H), 8.09 (d, J = 8.3 Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 190.3, 151.2, 140.1, 130.5, 124.3.
4-nitrobenzaldehyde (19): Following the general procedure, obtained in 61% yield as colorless liquid after silica gel chromatography. (18.4 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 10.17 (s, 1H), 8.41 (d, \textit{J} = 8.3 \text{ Hz}, 2H), 8.09 (d, \textit{J} = 8.3 \text{ Hz}, 2H). \]

\[\text{13C NMR (101 MHz, CDCl\textsubscript{3})} \delta 190.3, 151.2, 140.1, 130.5, 124.3. \]

4-formylbenzoic acid (20): Following the general procedure, obtained in 54% yield as white solid after silica gel chromatography. (16.2 mg, eluent: petroleum methanol/ethyl Acetate = 10/1). The compound data was in agreement with the literature (Angew. Chem. Int. Ed., 2017, 129, 8313–8317).

\[\text{1H NMR (400 MHz, DMSO)} \delta 13.42 (s, 1H), 10.11 (s, 1H), 8.14 (d, \textit{J} = 7.9 \text{ Hz}, 2H), 8.02 (d, \textit{J} = 7.9 \text{ Hz}, 2H). \]

\[\text{13C NMR (101 MHz, DMSO)} \delta 193.5, 167.0, 139.4, 136.1, 130.4, 130.0. \]

ethyl 4-formylbenzoate (21): Following the general procedure, obtained in 62% yield as white solid after silica gel chromatography. (22.1 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Org. Lett., 2017, 19, 1646–1649).

\[\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 10.11 (s, 1H), 8.21 (d, \textit{J} = 8.0 \text{ Hz}, 2H), 7.96 (d, \textit{J} = 8.0 \text{ Hz}, 2H), 4.42 (q, \textit{J} = 7.1 \text{ Hz}, 2H), 1.43 (t, \textit{J} = 7.1 \text{ Hz}, 3H). \]

\[\text{13C NMR (101 MHz, CDCl\textsubscript{3})} \delta 191.8, 165.6, 139.1, 135.5, 130.2, 129.5, 61.6, 14.3. \]

1-naphthaldehyde (22): Following the general procedure, obtained in 60% yield as a yellow oil after silica gel chromatography. (18.7 mg, eluent: petroleum ether/ethyl ether/ethyl acetate = 15/1).
acetate = 25/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 3492–3495).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.41 (s, 1H), 9.26 (d, \(J = 8.7\) Hz, 1H), 8.11 (d, \(J = 8.2\) Hz, 1H), 8.00 (d, \(J = 7.0\) Hz, 1H), 7.93 (d, \(J = 8.1\) Hz, 1H), 7.70 (t, \(J = 7.6\) Hz, 1H), 7.67 – 7.57 (m, 2H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 193.6, 136.7, 135.3, 133.8, 131.4, 130.6, 129.1, 128.5, 127.0, 124.9.

2-naphthaldehyde (23): Following the general procedure, obtained in 76% yield as white solid after silica gel chromatography. (23.7 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Angew. Chem. Int. Ed., 2014, 53, 10090–10094).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.16 (s, 1H), 8.34 (s, 1H), 8.08 – 7.86 (m, 4H), 7.69 – 7.54 (m, 2H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 192.3, 136.5, 134.6, 134.1, 132.7, 129.5, 129.1, 128.1, 127.1, 122.8.

2-(furan-2-ylmethoxy)benzaldehyde (24): Following the general procedure, obtained in 68% yield as white solid after silica gel chromatography. (27.5 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature. (Chem. Ber., 1981, 114, 384–388)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.46 (s, 1H), 7.88 – 7.81 (m, 1H), 7.60 – 7.53 (m, 1H), 7.47 – 7.46 (m, 1H), 7.13 (d, \(J = 8.4\) Hz, 1H), 7.09 – 7.04 (m, 1H), 6.46 (d, \(J = 3.2\) Hz, 1H), 6.42 – 6.39 (m, 1H), 5.13 (s, 2H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 189.8, 160.8, 149.4, 143.4, 135.8, 128.4, 125.5, 121.4, 113.4, 110.6, 110.5, 63.1.
4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzaldehyde (25): Following the general procedure, obtained in 65% yield as white solid after silica gel chromatography. (28.3 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Adv. Synth. Catal., 2014, 356, 1527–1532)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 10.04 (s, 1H), 7.96 (d, J = 8.1 \text{ Hz}, 2H), 7.85 (d, J = 8.1 \text{ Hz}, 2H), 3.80 (s, 4H), 1.04 (s, 6H). \\
\text{C NMR (101 MHz, CDCl}_3\text{)} & \delta 193.0, 137.8, 134.3, 128.7, 72.4, 31.9, 21.9. \text{ The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.}
\end{align*}
\]

tert-butyl (4-formylphenyl)carbamate (26): Following the general procedure, obtained in 63% yield as white solid after silica gel chromatography. (27.9 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Org. Lett., 2013, 15, 1394–1397).

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 9.89 (s, 1H), 7.82 (d, J = 8.4 \text{ Hz}, 2H), 7.57 (d, J = 8.4 \text{ Hz}, 2H), 7.19 (s, 1H), 1.53 (s, 9H). \\
\text{C NMR (101 MHz, CDCl}_3\text{)} & \delta 191.1, 152.2, 144.4, 131.3, 131.2, 117.8, 81.4, 28.3.
\end{align*}
\]

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-formylphenyl)propanoate (27):
Following the general procedure, obtained in 68% yield as a yellow oil after silica gel chromatography. (41.8 mg, eluent: petroleum ether/ethyl acetate = 8/1). The compound data was in agreement with the literature (Synthetic Communications, 1998, 28, 4279–4285).
1H NMR (400 MHz, CDCl$_3$) δ 10.00 (s, 1H), 7.83 (d, $J = 7.7$ Hz, 2H), 7.32 (d, $J = 7.7$ Hz, 2H), 5.05 (d, $J = 7.0$ Hz, 1H), 4.64 (d, $J = 6.3$ Hz, 1H), 3.74 (s, 3H), 3.36 – 3.02 (m, 2H), 1.42 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 191.8, 171.9, 154.9, 143.4, 135.3, 130.0, 129.9, 80.2, 77.2, 54.2, 52.4, 38.7, 29.7, 28.3.

(8S,9R,13R,14R,17R)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-2-carbaldehyde (28): Following the general procedure, obtained in 66% yield as white solid after silica gel chromatography. (43.3 mg, eluent: petroleum ether/ethyl acetate = 5/1). (mp 168.6 – 170.8 °C)

1H NMR (400 MHz, CDCl$_3$) δ 10.39 (s, 1H), 7.75 (s, 1H), 6.67 (s, 1H), 3.89 (s, 3H), 3.38 (s, 3H), 3.32 (t, $J = 8.3$ Hz, 1H), 2.96 – 2.87 (m, 2H), 2.44 – 2.33 (m, 1H), 2.22 – 2.12 (m, 1H), 2.12 – 2.01 (m, 2H), 1.96 – 1.86 (m, 1H), 1.74 – 1.64 (m, 1H), 1.62 – 1.16 (m, 7H), 0.79 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 189.7, 159.7, 146.3, 133.2, 125.7, 122.7, 111.7, 90.7, 58.0, 55.6, 50.2, 43.6, 43.2, 38.4, 37.9, 30.5, 27.8, 26.9, 26.3, 23.0, 11.5.

thiophene-2-carbaldehyde (29): Following the general procedure, obtained in 72% yield as yellow liquid after silica gel chromatography. (16.1 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Chem. Commun., 2014, 50, 2330–2333).

1H NMR (400 MHz, CDCl$_3$) δ 9.95 (s, 1H), 7.81 – 7.75 (m, 2H), 7.24 – 7.21 (m, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 183.1, 144.0, 136.4, 135.2, 128.3.
quinoline-3-carbaldehyde (30): Following the general procedure, obtained in 72% yield as brown liquid after silica gel chromatography. (16.1 mg, eluent: petroleum ether/ethyl acetate = 20/1). The compound data was in agreement with the literature (Chem. Commun., 2015, 51, 6572–6575).

\[
\begin{array}{c}
\text{CHO} \\
\text{OH} \\
\text{CHO}
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 9.94 (s, 1H), 8.13 (dd, $J = 2.8, 1.0$ Hz, 1H), 7.56 (dd, $J = 5.1, 0.8$ Hz, 1H), 7.39 (dd, $J = 5.0, 2.9$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 185.0, 143.0, 136.8, 127.4, 125.3.

furan-2,5-dicarbaldehyde (31): Following the general procedure, obtained in 81% yield as white solid after silica gel chromatography. (20.0 mg, eluent: petroleum ether/ethyl acetate = 5/1). The compound data was in agreement with the literature (J. Am. Chem. Soc., 2016, 138, 8344–8347).

\[
\begin{array}{c}
\text{CHO} \\
\text{OHC} \\
\text{CHO}
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 9.87 (s, 2H), 7.35 (s, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 179.2, 154.2, 119.3.

6-fluoronicotinaldehyde (32): Following the general procedure, obtained in 65% yield as colorless liquid after silica gel chromatography. (16.3 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Biochemistry, 2010, 49, 10421–10439).

\[
\begin{array}{c}
\text{CHO} \\
\text{CHO} \\
\text{F}
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 10.09 (s, 1H), 8.76 (d, $J = 2.0$ Hz, 1H), 8.42 – 8.25 (m, 1H), 7.11 (dd, $J = 8.5, 2.6$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 188.7, 166.3 (d, $J = 248.5$ Hz), 152.1 (d, $J = 16.7$ Hz), 141.0 (d, $J = 9.9$ Hz), 130.3 (d, $J = 4.2$ Hz), 110.8 (d, $J = 37.6$ Hz).

19F NMR (376 MHz, CDCl$_3$) δ -57.7.
benzo[b]thiophene-2-carbaldehyde (33): Following the general procedure, obtained in 77% yield as yellow solid after silica gel chromatography. (24.9 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Org. Lett., 2014, 16, 3492–3495).

1H NMR (400 MHz, CDCl$_3$) δ 10.11 (s, 1H), 8.03 (s, 1H), 7.99 – 7.84 (m, 2H), 7.54 – 7.48 (m, 1H), 7.47 – 7.40 (m, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 184.7, 143.3, 142.7, 138.5, 134.5, 128.2, 126.3, 125.3, 123.3.

![benzo[b]thiophene-2-carbaldehyde](image)

1-(phenylsulfonyl)-1H-indole-3-carbaldehyde (34): Following the general procedure, obtained in 70% yield as brown solid after silica gel chromatography. (39.9 mg, eluent: petroleum ether/ethyl acetate = 4/1). The compound data was in agreement with the literature (Eur. J. Med. Chem., 2012, 53, 283–291).

1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 8.28 – 8.21 (m, 2H), 8.01 – 7.95 (m, 3H), 7.62 (t, $J = 7.5$ Hz, 1H), 7.56 – 7.49 (m, 2H), 7.45 – 7.33 (m, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 185.4, 137.4, 136.2, 135.3, 134.8, 129.7, 127.2, 126.4, 126.3, 125.2, 122.7, 122.5, 113.3.

![1-(phenylsulfonyl)-1H-indole-3-carbaldehyde](image)

6-chloronicotinaldehyde (35): Following the general procedure, obtained in 53% yield as colorless liquid after silica gel chromatography. (14.9 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Org. Lett., 2005, 7, 2965–2967).

1H NMR (400 MHz, CDCl$_3$) δ 10.10 (s, 1H), 8.87 (s, 1H), 8.14 (d, $J = 8.2$ Hz, 1H), 7.52 (d, $J = 8.3$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 189.2, 157.0, 152.4, 138.0, 130.4, 125.2.
quinoline-3-carbaldehyde (36): Following the general procedure, obtained in 57% yield as light yellow solid after silica gel chromatography. (17.9 mg, eluent: petroleum ether/ethyl acetate = 15/1). The compound data was in agreement with the literature (Angew. Chem. Int. Ed., 2017, 56, 1500–1505).

1H NMR (400 MHz, CDCl$_3$) δ 10.26 (s, 1H), 9.37 (s, 1H), 8.64 (s, 1H), 8.20 (d, $J = 8.5$ Hz, 1H), 8.00 (d, $J = 8.2$ Hz, 1H), 7.90 (t, $J = 7.7$ Hz, 1H), 7.68 (t, $J = 7.5$ Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 190.8, 150.5, 149.1, 140.2, 132.7, 129.7, 129.5, 128.6, 127.9, 127.1.
5. NMR Spectra

1H NMR spectrum of 4CzIPN

13C NMR spectrum of 4CzIPN
1H NMR spectrum of 4-methylbenzaldehyde (I)

13C NMR spectrum of 4-methylbenzaldehyde (I)
1H NMR spectrum of 3,5-dimethylbenzaldehyde (2)

13C NMR spectrum of 3,5-dimethylbenzaldehyde (2)
1H NMR spectrum of 4-(tert-butyl)benzaldehyde (3)

13C NMR spectrum of 4-(tert-butyl)benzaldehyde (3)
1H NMR spectrum of 4-fluorobenzaldehyde (4)

13C NMR spectrum of 4-fluorobenzaldehyde (4)
19F NMR spectrum of 4-fluorobenzaldehyde (4)

1H NMR spectrum of 4-chlorobenzaldehyde (5)
13C NMR spectrum of \textbf{4-chlorobenzaldehyde (5)}

\[\text{Diagram of 4-chlorobenzaldehyde (5)}\]

1H NMR spectrum of \textbf{4-bromobenzaldehyde (6)}

\[\text{Diagram of 4-bromobenzaldehyde (6)}\]
13C NMR spectrum of 4-bromobenzaldehyde (6)

1H NMR spectrum of 4-methoxybenzaldehyde (7)
13C NMR spectrum of 4-methoxybenzaldehyde (7)

1H NMR spectrum of 3-chlorobenzaldehyde (8)
13C NMR spectrum of 3-chlorobenzaldehyde (8)

1H NMR spectrum of 3-formylbenzonitrile (9)
13C NMR spectrum of 3-formylbenzonitrile (9)

1H NMR spectrum of 4-formylbenzonitrile (10, 11)
13C NMR spectrum of 4-formylbenzonitrile (10, 11)

1H NMR spectrum of 4-(trifluoromethyl)benzaldehyde (12)
13C NMR spectrum of 4-(trifluoromethyl)benzaldehyde (12)

19F NMR spectrum of 4-(trifluoromethyl)benzaldehyde (12)
1H NMR spectrum of 4-(methylsulfonyl)benzaldehyde (13)

13C NMR spectrum of 4-(methylsulfonyl)benzaldehyde (13)
1H NMR spectrum of [1,1'-biphenyl]-4-carbaldehyde (14)

13C NMR spectrum of [1,1'-biphenyl]-4-carbaldehyde (14)
1H NMR spectrum of Terephthalaldehyde (15)

13C NMR spectrum of Terephthalaldehyde (15)
1H NMR spectrum of 4-acetylbenzaldehyde (16, 17)

13C NMR spectrum of 4-acetylbenzaldehyde (16, 17)
1H NMR spectrum of 4-nitrobenzaldehyde (18, 19)

13C NMR spectrum of 4-nitrobenzaldehyde (18, 19)
1H NMR spectrum of 4-formylbenzoic acid (20)

13C NMR spectrum of 4-formylbenzoic acid (20)
1H NMR spectrum of ethyl 4-formylbenzoate (21)

13C NMR spectrum of ethyl 4-formylbenzoate (21)
1H NMR spectrum of 1-naphthaldehyde (22)

13C NMR spectrum of 1-naphthaldehyde (22)
1H NMR spectrum of 2-naphthaldehyde (23)

13C NMR spectrum of 2-naphthaldehyde (23)
1H NMR spectrum of 2-(furan-2-ylmethoxy)benzaldehyde (24)

13C NMR spectrum of 2-(furan-2-ylmethoxy)benzaldehyde (24)
1H NMR spectrum of 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzaldehyde (25)

13C NMR spectrum of 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzaldehyde (25)
1H NMR spectrum of tert-butyl (4-formylphenyl)carbamate (26)

13C NMR spectrum of tert-butyl (4-formylphenyl)carbamate (26)
1H NMR spectrum of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-formylphenyl)propanoate (27)

13C NMR spectrum of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-formylphenyl)propanoate (27)
1H NMR spectrum of (8S,9R,13R,14R,17R)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-2-carbaldehyde (28)

13C NMR spectrum of (8S,9R,13R,14R,17R)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-2-carbaldehyde (28)
1H NMR spectrum of thiophene-2-carbaldehyde (29)

13C NMR spectrum of thiophene-2-carbaldehyde (29)
1H NMR spectrum of quinoline-3-carbaldehyde (30)

13C NMR spectrum of quinoline-3-carbaldehyde (30)
1H NMR spectrum of furan-2,5-dicarbaldehyde (31)

13C NMR spectrum of furan-2,5-dicarbaldehyde (31)
1H NMR spectrum of 6-fluoronicotinaldehyde (32)

13C NMR spectrum of 6-fluoronicotinaldehyde (32)
19F NMR spectrum of 6-fluoronicotinaldehyde (32)

1H NMR spectrum of benzo[b]thiophene-2-carbaldehyde (33)
13C NMR spectrum of benzo[b]thiophene-2-carbaldehyde (33)

1H NMR spectrum of 1-(phenylsulfonyl)-1H-indole-3-carbaldehyde (34)
13C NMR spectrum of 1-(phenylsulfonyl)-1H-indole-3-carbaldehyde (34)

1H NMR spectrum of 6-chloronicotinaldehyde (35)
13C NMR spectrum of 6-chloronicotinaldehyde (35)

1H NMR spectrum of quinoline-3-carbaldehyde (36)
13C NMR spectrum of quinoline-3-carbaldehyde (36)