Copper-Catalyzed Cyanation of Heterocycle C-H Bonds with Ethyl (ethoxymethylene)cyanoacetate as a Cyanating Agent and its Mechanism

Ze-lin Lia, Kang-kang Suna, and Chun Cai*a

a Chemical Engineering College, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China

Fax: (+86)-25-8431-5030; phone: (+86)-25-8431-5514; e-mail: c.cai@njust.edu.cn

1. General information 2
2. General procedure 2
3. Characterization data 3
4. NMR spectra 9
1. General information

All compounds are characterized by 1H NMR, 13C NMR and MS. Analytical thin-layer chromatography is performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. 1H NMR and 13C NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl$_3$, respectively, and chemical shifts are reported in ppm. GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J-413:30 m × 320 µm × 0.25 µm, H, FID detection). GC-MS data was recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies).

2. General procedure

General procedure for the synthesis of cyanating product: To a mixture of benzothiazoles (0.5 mmol) 1a, Cu(OAc)$_2$ (1.0 equiv.), DTBP (3.5 equiv.) and solvent (DMF =2.0 ml) in a reaction tube was then added additive KI (0.1 equiv.). The reaction mixture was stirred at 135°C for 24h in air. The reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over MgSO$_4$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired products 3.
3. Characterization data

benzo[d]thiazole-2-carbonitrile (3a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3a as white solid (57.6mg, 72%). 1H NMR (500 MHz, Chloroform-d) δ 8.28 – 8.22 (m, 1H), 8.04 – 7.96 (m, 1H), 7.66 (pd, J = 7.2, 1.5 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 151.3, 135.6, 134.4, 127.7, 127.0, 124.4, 120.8, 112.0. GC-MS (EI) m/z: 160.

6-chlorobenzo[d]thiazole-2-carbonitrile (3b): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3b as white solid (55.3mg, 57%). 1H NMR (500 MHz, Chloroform-d) δ 8.24 (d, J = 1.9 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.63 (dd, J = 8.7, 2.0 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 152.1, 137.3, 133.5, 131.5, 128.4, 124.0, 121.6, 111.6. GC-MS (EI) m/z: 194.

6-bromobenzo[d]thiazole-2-carbonitrile (3c): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3c as white solid (63.1mg, 53%). 1H NMR (500 MHz, Chloroform-d) δ 8.16 (d, J = 1.8 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.78 (dd, J = 8.8, 1.9 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 150.1, 135.8, 130.8, 126.0, 125.3, 123.4, 122.1, 111.6. GC-MS (EI) m/z: 238.

5-methoxybenzo[d]thiazole-2-carbonitrile (3d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3d as white solid (64.6mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 7.82 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.28 (dd, J = 9.0, 2.5 Hz, 1H), 3.93 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 159.3, 152.9, 126.5, 120.9, 119.1, 113.1, 112.1, 105.2, 54.8. GC-MS (EI) m/z: 190.

5-chlorobenzo[d]thiazole-2-carbonitrile (3e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3e as white solid (66.0mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 8.23 (d, J = 1.8 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.62 (dd, J = 8.7, 1.9 Hz, 1H). 13C NMR (126 MHz,
5-bromobenzo[d]thiazole-2-carbonitrile (3f): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3f as white solid (66.6mg, 56%). 1H NMR (500 MHz, Chloroform-d) δ 8.15 (d, $J = 1.8$ Hz, 1H), 8.08 (d, $J = 8.8$ Hz, 1H), 7.76 (dd, $J = 8.8$, 1.8 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 150.1, 135.9, 135.8, 130.8, 125.3, 123.4, 122.1, 111.6. GC-MS (EI) m/z: 238.

benzo[d]oxazole-2-carbonitrile (3g): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 3g as white solid (28.1mg, 39%). 1H NMR (500 MHz, Chloroform-d) δ 7.91 (d, $J = 8.1$ Hz, 1H), 7.68 (d, $J = 8.3$ Hz, 1H), 7.62 (t, $J = 7.8$ Hz, 1H), 7.54 (t, $J = 7.7$ Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 149.5, 136.3, 128.1, 125.6, 110.6. GC-MS (EI) m/z: 144.

1H-indole-3-carbonitrile (4a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 4a as white solid (44.7mg, 63%). 1H NMR (500 MHz, Chloroform-d) δ 8.79 (s, 1H), 7.84 (d, $J = 7.8$ Hz, 1H), 7.79 (d, $J = 3.0$ Hz, 1H), 7.53 (d, $J = 7.7$ Hz, 1H), 7.43 – 7.34 (m, 2H). 13C NMR (126 MHz, Chloroform-d) δ 133.9, 130.8, 126.0, 123.4, 121.5, 118.8, 114.8, 111.0, 86.7. GC-MS (EI) m/z: 142.

1-methyl-1H-indole-3-carbonitrile (4b): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 4b as white solid (53.0mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 7.80 (d, $J = 8.0$ Hz, 1H), 7.58 (d, $J = 1.6$ Hz, 1H), 7.47 – 7.32 (m, 3H), 3.89 (d, $J = 1.6$ Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 135.0, 134.6, 126.8, 122.9, 121.2, 118.8, 115.0, 109.4, 84.5, 32.7. GC-MS (EI) m/z: 156.
2-methyl-1H-indole-3-carbonitrile (4c): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 4c as white solid (47.6mg, 61%). 1H NMR (500 MHz, Chloroform-\(d\)) δ 8.42 (s, 1H), 7.69 – 7.63 (m, 1H), 7.39 – 7.33 (m, 1H), 7.25 (dd, J = 5.8, 2.5 Hz, 2H), 2.64 (s, 3H). 13C NMR (126 MHz, Chloroform-\(d\)) δ 143.4, 133.6, 126.7, 122.5, 121.1, 118.1, 115.2, 110.2, 85.1, 12.1. GC-MS (EI) m/z: 156.

6-methoxy-1H-indole-3-carbonitrile (4d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 4d as white solid (49.9mg, 58%). 1H NMR (500 MHz, Chloroform-\(d\)) δ 8.64 (s, 1H), 7.73 (d, J = 3.1 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.24 (d, J = 2.4 Hz, 1H), 7.03 (dd, J = 8.9, 2.4 Hz, 1H), 3.94 (s, 3H). 13C NMR (126 MHz, Chloroform-\(d\)) δ 155.1, 130.7, 128.6, 126.9, 115.0, 114.3, 111.9, 99.7, 86.5, 54.8. GC-MS (EI) m/z: 172.

6-chloro-1H-indole-3-carbonitrile (4e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 4e as white solid (44.9mg, 51%). 1H NMR (500 MHz, Chloroform-\(d\)) δ 8.74 (s, 1H), 7.81 – 7.71 (m, 2H), 7.53 (d, J = 1.7 Hz, 1H), 7.34 (dd, J = 8.6, 1.8 Hz, 1H). 13C NMR (126 MHz, Chloroform-\(d\)) δ 134.2, 131.3, 129.6, 115.1, 114.7, 119.7, 114.1, 113.4, 111.1, 87.3. GC-MS (EI) m/z: 176.

picolinonitrile (5a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5a as white solid (36.9mg, 71%). 1H NMR (500 MHz, Chloroform-\(d\)) δ 8.69 (d, J = 4.6 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.57 – 7.52 (m, 1H). 13C NMR (126 MHz, Chloroform-\(d\)) δ 150.1, 136.3, 132.8, 127.6, 126.2, 116.3. GC-MS (EI) m/z: 104.

3-fluoropicolinonitrile (5b): The crude product was purified by column
chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5b as white solid (42.1mg, 69%). 1H NMR (500 MHz, Chloroform-d) δ 8.56 (dd, J = 4.1, 1.8 Hz, 1H), 7.73 – 7.49 (m, 2H). 13C NMR (126 MHz, Chloroform-d) δ 161.4, 159.2, 146.1, 127.8, 123.7, 122.0, 112.0. GC-MS (EI) m/z: 122.

3-chloropicolinonitrile (5c): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5c as white solid (46.2mg, 67%). 1H NMR (500 MHz, Chloroform-d) δ 8.62 (dd, J = 4.7, 1.4 Hz, 1H), 7.89 (dd, J = 8.3, 1.4 Hz, 1H), 7.52 (dd, J = 8.4, 4.6 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 147.8, 136.6, 135.0, 132.3, 126.6, 113.7. GC-MS (EI) m/z: 138.

3-bromopicolinonitrile (5d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5d as white solid (57.3mg, 63%). 1H NMR (500 MHz, Chloroform-d) δ 8.66 (dd, J = 4.6, 1.4 Hz, 1H), 8.04 (dd, J = 8.3, 1.4 Hz, 1H), 7.43 (dd, J = 8.3, 4.6 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 148.1, 139.7, 134.3, 126.7, 123.6, 114.7. GC-MS (EI) m/z: 182.

6-methylpicolinonitrile (5e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5e as white solid (36.6mg, 62%). 1H NMR (500 MHz, Chloroform-d) δ 7.73 (t, J = 7.8 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.9 Hz, 1H), 2.62 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 159.7, 136.1, 132.2, 125.9, 124.7, 116.4, 23.4. GC-MS (EI) m/z: 118.

6-methylpicolinonitrile (5f): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5f as white solid (40.1mg, 68%). 1H NMR (500 MHz, Chloroform-d) δ 8.55 (d, J = 5.0 Hz, 1H), 7.52 (s, 1H), 7.33 (d, J = 5.0 Hz, 1H), 2.43 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 149.8, 147.8, 132.8, 128.4, 126.9, 116.4, 19.9. GC-MS (EI) m/z: 118.
quinoline-2-carbonitrile (5g): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 19:1) to give 5g as white solid (51.6mg, 67%). 1H NMR (500 MHz, Chloroform-d) δ 8.32 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.86 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.75 – 7.69 (m, 2H). 13C NMR (126 MHz, Chloroform-d) δ 147.3, 136.5, 132.7, 130.3, 129.1, 128.5, 127.7, 126.8, 122.4, 116.6. GC-MS (EI) m/z: 154.
4. NMR spectra