Assembly of Fully Substituted 2,5-Dihydrothiophenes via a Novel Sequential Multicomponent Reaction

Giacomo Mari, Michele Verboni, Lucia De Crescentini, Gianfranco Favi, Stefania Santeusanio, and Fabio Mantellini*

Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino (PU), Italy

e-mail: fabio.mantellini@uniurb.it

SUPPORTING INFORMATION

Table of Contents

1. General experimental details. 2
2. General procedure for synthesis of ethyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5a under SFC conditions. 2
3. General procedure for sequential synthesis of 3-alkylamino-2-(carbamothioyl)but-2-enoates (ACTs) 5a-k in SFC/solvent. 2
4. Spectral data of 3-alkylamino-2-(carbamothioyl)but-2-enoates (ACTs) 5a-k. 3
5. One-pot procedure for synthesis of 2,5-dihydrothiophenes 7a-w. 8
6. Spectral data of 2,5-dihydrothiophenes 7a-w. 9
7. General procedure for synthesis of 5-amino thiophene-2,4-dicarboxylates 8a-j. 22
8. Spectral data of 5-amino thiophene-2,4-dicarboxylates 8a-j. 22
9. Spectral data of α-amino hydrazone 11. 27
10. Spectral data of hydrazone 12. 27
11. 1H and 13C NMR spectra of 3-alkylamino-2-(carbamothioyl)but-2-enoates 5a-k. 28
12. 1H and 13C NMR spectra of 2,5-dihydrothiophenes 7a-w. 39
13. 1H and 13C NMR spectra of 5-amino thiophene-2,4-dicarboxylates 8a-j. 63
14. 1H and 13C NMR spectra of α-amino hydrazone 11. 75
15. 1H and 13C NMR spectra of hydrazone 12. 76
16. References and notes. 77

All the commercially available reagents and solvents were used without further purification. 1,2-Diaza-1,3-dienes 6a–k were synthesized as a mixture of E/Z isomers as previously reported. Chromatographic purification of compounds was carried out on silica gel (60–200 μm). TLC analysis was performed on pre-loaded (0.25 mm) glass supported silica gel plates (Kieselgel 60); compounds were visualized by exposure to UV light and by dipping the plates in 1% Ce(SO$_4$)$_3$·4H$_2$O, 2.5% (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O in 10% sulphuric acid followed by heating on a hot plate. All 1H NMR and 13C NMR spectra were recorded at 400 and 100.56 MHz, respectively. Proton and carbon spectra were referenced internally to solvent signals, using values of $\delta = 2.49$ ppm for proton (middle peak) and $\delta = 39.50$ ppm for carbon (middle peak) in DMSO-d_6 and $\delta = 7.27$ ppm for proton and $\delta = 77.00$ ppm for carbon (middle peak) in CDCl$_3$. The following abbreviations are used to describe peak patterns where appropriate: s = singlet, d = doublet, t = triplet q = quartet, sep = septet, m = multiplet and br = broad signal. All coupling constants (J) are given in Hz. FT-IR spectra were obtained as Nujol mulls. Mass spectra were obtained by EI (70eV) or by ESI-MS analyses. Elemental analyses were within ± 0.4 of the theoretical values (C, H, N). Melting points were determined in open capillary tubes and are uncorrected.

2. General procedure for synthesis of ethyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5a under SFC conditions.

n-Butyl amine 1a (0.5 mmol) was added to methyl 3-oxobutanoate 2a (0.55 mmol) under solvent-free conditions at room temperature and vigorously stirred. After 0.5 h, phenyl isothiocyanate 4a (0.50 mmol) was added and the reaction was stirred until the disappearance of the enamino ester 3 (6.5 h monitored by TLC). Then, the crude was chromatographed on silica gel column (elution mixture: cyclohexane: ethyl acetate) obtaining the corresponding ethyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5a.

3. General procedure for synthesis of 3-alkylamino-2-(carbamothioyl)but-2-enoates (ACTs) 5a–k

Butyl amine 1a (0.5 mmol) was added to β-ketoesters 2a–e (0.55 mmol) under solvent-free conditions at room temperature and vigorously stirred. After 0.5 h aryl isothiocyanates 4a–e (0.50 mmol) in MeOH (1.5 mL) were added and the reactions were stirred until the disappearance of the enamino esters 3 (6.0–18.0 h monitored by TLC). The compounds 5a,c–j crystallized directly from the reaction medium and were collected as pure products by filtration. From the mother solution, the methanol was evaporated under reduced pressure and the residue ACTs 5a,c–j were purified by chromatography on silica gel column (elution mixture: cyclohexane: ethyl acetate) and successively crystallized in methanol. In the other cases, the reaction solvent was evaporated under reduced pressure and the final ACTs 5b,k were purified by chromatography on silica gel column (elution mixture: cyclohexane: ethyl acetate) and successively crystallized in methanol.
Spectral data of 3-alkylamino-2-(carbamothioyl)but-2-enoates (ACTs) 5a-m.

![Chemical structure image]

Ethyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5a.

5a was isolated by precipitation in methanol in 78% yield. Light yellow solid; mp: 107-109 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 0.95 \text{ (t, 3H, } J=7.6 \text{ Hz, } n\text{-But}), 1.30 \text{ (t, 3H, } J=7.2 \text{ Hz, OCH}_2CH_3), 1.37-1.69 \text{ (m, 4H, } n\text{-But}), 2.23 \text{ and 2.25 (2s, 3H, } CH_3), 3.24 \text{ and 3.33 (2q, 2H, } J=6.0 \text{ Hz, } J=6.8 \text{ Hz, } n\text{-But}), 3.87 \text{ and 4.21 (2q, 2H, } J=6.8 \text{ Hz, } J=7.2 \text{ Hz, OCH}_2CH_3), 7.03-7.56 \text{ (m, 5H, Ph), 9.65, 9.70, 10.58 \text{ and 12.07 (4brs, 2H, } NH);} \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 13.6 \text{ (q), 14.2 (q), 17.2 (t), 19.4 (t), 19.9 (t), 20.1 (t), 31.2 (q), 31.9 (q), 43.1 (t), 43.7 (t), 59.1 (t), 60.00 (t), 97.8 (s), 100.3 (s), 122.0 (d), 125.0 (d), 125.7 (d), 126.1 (d), 128.6 (d), 129.0 (d), 139.4 (s), 161.9 (s), 165.8 (s), 166.1 (s), 169.5 (s), 191.7 (s), 191.7 (s), 191.8 (s), 201.4 (s);} \text{IR (nujol): } \nu_{max} = 3232, 3142, 1653, 1634 \text{ cm}^{-1};} \text{MS m/z (ESI): 321.26 (M + H\(^+\));}\text{ anal. calcd. for C}_{17}H_{24}N_2O_2S (320.45): C 63.72, H 7.55, N 8.74; found: C 63.84, H 7.57, N 8.68.}

Ethyl 3-(benzylamino)-2-(phenylcarbamothioyl)but-2-enoate 5b.

5b was purified by chromatography on silica gel column and successively crystallized in methanol with 54% yield. Light yellow solid; mp: 97-98 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 1.05 \text{ and 1.29 (2t, 3H, } J=6.8 \text{ Hz, } J=7.2 \text{ Hz, OCH}_2CH_3), 2.17 \text{ and 2.25 (2s, 3H, } CH_3), 3.94, \text{ and 4.20 (2q, 2H, } J=6.8 \text{ Hz, } J=7.2 \text{ Hz, OCH}_2CH_3), 4.44 \text{ and 4.53 (2d, 2H, } J=6.0 \text{ Hz, } J=6.0 \text{ Hz, NHCH}_2Ph), 7.05-7.40 \text{ (m, 9H,2Ph), 7.61 (d, 1H, } J=7.6 \text{ Hz, Ph), 9.91, 9.93, 10.31, 11.96 \text{ (4brs, 2H, } NH);} \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 14.1 \text{ (q), 14.2 (q), 17.0 (q), 18.9 (q), 46.9 (t), 47.4 (t), 59.3 (t), 60.0 (t), 99.0 (s), 101.6 (s), 122.4 (d), 124.6 (d), 126.0 (d), 126.2 (d), 126.5 (d), 127.0 (d), 127.4 (d), 127.6 (d), 128.6 (d), 128.7 (d), 128.8 (d), 136.8 (s), 137.7 (s), 139.2 (s), 139.3 (s), 161.2 (s), 164.9 (s), 166.1 (s), 169.0 (s), 192.8 (s), 201.3 (s);} \text{IR (nujol): } \nu_{max} = 3130, 3088, 1648, 1589 \text{ cm}^{-1};} \text{MS m/z (ESI): 321.26 (M + H\(^+\));}\text{ anal. calcd. for C}_{17}H_{24}N_2O_2S (320.45): C 63.72, H 7.55, N 8.74; found: C 63.84, H 7.57, N 8.68.

Ethyl 3-(phenethylamino)-2-(phenylcarbamothioyl)but-2-enoate 5c.

5c was isolated by precipitation in methanol in 53% yield. Light yellow solid; mp: 89–91 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 0.99\) and 1.30 (2t, 3H, \(J=7.2\) Hz, \(J=7\) Hz, OCH\(_2\)CH\(_3\)), 2.15 and 2.18 (2s, 3H, CH\(_3\)), 2.87-3.02 (m, 2H, NCH\(_2\)CH\(_2\)), 3.49-3.61 (m, 2H, NCH\(_2\)CH\(_2\)), 3.88 and 4.21 (2q, 2H, J=7,2 Hz, J=7, Hz, OCH\(_2\)CH\(_3\)), 7.02-7.58 (m, 10H, 2Ph), 9.54, 9.76, 10.44 and 12.06 (4brs, 2H, 2NH); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 14.2\) (q), 19.0 (q), 36.0 (t), 45.5 (t), 60.0 (t), 82.2 (s), 98.2 (s), 100.9 (s), 122.0 (d), 124.8 (d), 126.1 (d), 126.7 (d), 128.5 (d), 128.6 (d), 128.7 (d), 128.9 (d), 129.4 (d), 137.9 (s), 139.3 (s), 161.4 (s), 165.1 (s), 165.9 (s), 169.2 (s), 170.4 (s), 192.2 (s), 201.2 (s); IR (nujol): \(\nu_{max} = 3255, 3167, 1622, 1612\) cm\(^{-1}\); MS \(m/z\) (ESI): 369.53 (M + H\(^+\)); anal. calcd. for C\(_{21}\)H\(_{24}\)N\(_2\)O\(_2\)S (368.49): C 68.45, H 6.56, N 7.60; found: C 68.59, H 6.61, N 7.52.

![Ethyl 3-(phenethylamino)-2-(phenylcarbamothioyl)but-2-enoate 5c.](image)

Ethyl 3-(sec-butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5d.

5d was isolated by precipitation in methanol in 34% yield. Light yellow solid; mp: 88–90 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 0.87-0.97\) (m, 3H, OCH\(_2\)CH\(_3\)), 1.10-1.16 (m, 6H NCH(CH\(_2\)CH\(_2\)CH\(_3\))), 1.50-1.53 (m, 2H, NCH(CH\(_3\))CH\(_2\)CH\(_3\)), 2.11 (s, 3H, CH\(_3\)), 3.61-3.64 (m, 1H, NCH\(_2\)(CH\(_3\))CH\(_2\)CH\(_3\)), 3.97-4.08 (m, 2H, OCH\(_2\)CH\(_3\)), 7.19-7.88 (m, 5H, Ph), 9.38, (brs, 1H, NH), 11.51, (brs, 1H, NH); \(^{13}\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 10.2\) (q), 14.4 (q), 16.2 (q), 21.4 (q), 30.1 (t), 49.4 (d), 58.4 (t), 81.0 (s), 102.7 (s), 122.8 (d), 123.6 (d), 125.6 (d), 125.9 (d), 128.4 (d), 128.4 (d), 129.4 (s), 129.9 (s), 139.4 (s), 140.2(s), 159.5 (s), 161.5 (s), 166.9 (s),168.2 (s), 169.5 (s),
179.6 (s), 196.9 (s); IR (nujol): $\nu_{\text{max}} =$ 3257, 3191, 1624, 1615 cm$^{-1}$; MS m/z (ESI): 321.19 (M + H$^+$); anal. calcd. for C$_{17}$H$_{24}$N$_2$O$_2$S (320.45): C 63.72, H 7.55, N 8.74; found: C 63.58, H 7.57, N 8.83.

Ethyl 3-(isobutylamino)-2-(phenylcarbamothioyl)but-2-enoate 5e.

5e was isolated by precipitation in methanol in 60% yield. Light yellow solid; mp: 108–110 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): $\delta =$ 0.95-1.02 and 1.04 (m and d, 6H, J=6,4 Hz, NCH$_2$CH(CH$_3$)$_2$), 1.23-1.28 and 1.31 (m and t, 3H, J=7,6 Hz, OCH$_2$CH$_3$), 1.79-1.83 and 1.95 (m and ept, 1H, J=6,8 Hz, NCH$_2$CH(CH$_3$)$_2$), 2.21 and 2.25 (2s, 3H, CH$_3$), 3.06-3.18 (m, 2H, NCH$_2$CH(CH$_3$)$_2$), 3.84-3.90 and 4.22 (m and q, 2H, OCH$_2$CH$_3$), 7.03-7.57 (m, 5H, Ph), 9.71, 9.76, 10.57 and 12.18 (4brs, 2H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): $\delta =$ 14.2 (t), 20.0 (d), 20.0 (q), 20.4 (q), 51.7 (t), 60.0 (t), 100.4 (s), 122.0 (s), 125.1 (d), 125.7 (d), 126.1 (d), 127.2 (d), 128.6 (d), 129.0 (s), 129.5 (d), 139.5 (s), 161.9 (s), 165.9 (s), 166.1 (s), 169.6 (s), 191.6 (s), 191.6 (s), 201.7 (s); IR (nujol): $\nu_{\text{max}} =$ 3240, 3141, 1654, 1626 cm$^{-1}$; MS m/z (ESI): 321.53 (M + H$^+$); anal. calcd. for C$_{17}$H$_{24}$N$_2$O$_2$S (320.45): C 63.72, H 7.55, N 8.74; found: C 63.85, H 7.51, N 8.78.

Methyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5f.

5f was isolated by precipitation in methanol in 82% yield. Light yellow solid; mp: 109–110 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): $\delta =$ 0.93 (t, 3H, J=7,6 Hz, n-But), 1.33-1.64 (m, 4H, n-But), 2.18 and 2.21 (2s, 3H, CH$_3$), 3.20 and 3.30 (2q, 2H, J=6,0 Hz, J=6,8 Hz, n-But), 3.40 and 3.71 (2s, 3H, OCH$_3$), 7.02-7.60 (m, 5H, Ph), 9.54, 9.59, 10.40 and 11.69 (4brs, 2H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): $\delta =$ 13.6 (q), 17.0 (t), 19.0 (t), 19.8 (t), 20.1 (t), 31.2 (q), 31.8 (q), 43.0 (t), 43.6 (t), 50.3 (q), 51.00 (q), 97.5 (s), 100.3 (s), 122.4 (d), 124.6 (d), 126.1 (d), 128.5 (d), 128.9 (d), 139.2 (s), 139.3 (s), 161.7 (s), 165.3 (s), 166.5 (s), 169.6 (s), 192.2 (s), 192.3 (s), 201.5 (s), 201.5 (s); IR
Methyl 3-(butylamino)-2-((4-methoxyphenyl)carbamothioyl)but-2-enoate 5g.

5g was isolated by precipitation in methanol in 77% yield. Light yellow solid; mp: 107-109 °C; \(^1H\) NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 0.89-0.95\) (m, 3H, \(n\)-But), 1.33-1.65 (m, 4H, \(n\)-But), 2.16 and 2.21 (2s, 3H, \(CH_3\)), 3.16-3.22 and 3.36 (m and q, 2H, \(J=5.2\) Hz, \(n\)-But), 3.46, 3.60 and 3.72 (3s, 3H, OCH\(_3\)), 3.76, 3.79 and 3.80 (3s, 3H, OCH\(_3\)), 6.78-7.46 (m, 4H, Ph), 9.46, 9.70, 10.26 and 11.67 (4brs, 2H, NH); \(^13C\) NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 13.6\) (q), 16.9 (q), 18.9 (t), 19.8 (q), 20.1 (q), 31.3 (t), 31.8 (t), 32.3 (t), 42.6 (t), 43.0 (t), 43.5 (t), 49.7 (q), 50.4 (q), 51.0 (q), 55.3 (q), 55.4 (q), 81.2 (s), 97.2 (s), 100.1 (s), 113.8 (d), 114.0 (d), 114.7 (d), 124.3 (s), 126.4 (d), 126.8 (d), 132.4 (s), 157.7 (s), 161.3 (s), 165.1 (s), 166.5 (s), 169.6 (s), 192.6 (s), 201.6 (s); IR (nujol): \(\nu_{max} = 3257, 3252, 1631, 1597\) cm\(^{-1}\); MS \(m/z\) (ESI): 337.21 (M + H\(^+\)); anal. calcd. for C\(_{17}\)H\(_{24}\)N\(_2\)O\(_3\)S (336.45): C 60.69, H 7.19, N 8.33; found: C 60.83, H 7.16, N 8.48.

Ethyl 3-(butylamino)-2-((4-chlorophenyl)carbamothioyl)but-2-enoate 5h.

5h was isolated by precipitation in methanol in 75% yield. Light yellow solid; mp: 89–92 °C; \(^1H\) NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 0.96\) (t, 3H, \(J=7.2\) Hz, \(n\)-But), 1.31 (t, 3H, \(J=7.2\) Hz, OCH\(_2\)CH\(_3\)), 1.43-1.70 (m, 4H, \(n\)-But), 2.26 (s, 3H, \(CH_3\)), 3.36 (q, 2H, \(J=5.6\) Hz, \(n\)-But), 4.22 (q, 2H, OCH\(_2\)CH\(_3\)), 7.32 (d, 2H, \(J=8.4\) Hz, Ph), 7.49 (d, 2H, \(J=8.4\) Hz, Ph), 10.86, (brs, 1H, NH); 12.49 (brs, 1H, NH); \(^13C\) NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 13.6\) (q), 13.7 (q), 14.2 (q), 14.6 (q), 19.3 (t), 20.0 (t), 20.2 (t), 31.2 (q), 32.4 (q), 42.7 (t), 43.8 (t), 58.2 (t), 60.2 (t), 81.6 (s), 99.9 (s), 126.5 (d), 126.9 (d), 128.7 (d), 130.0 (d), 131.2 (s), 132.9 (s), 138.0 (s), 161.9 (s), 166.7 (s), 169.9 (s), 170.6 (s), 195.9...
Benzyl 3-(butylamino)-2-(methylcarbamothioyl)but-2-enoate 5i.

5i was isolated by precipitation in methanol in 13% yield. Light yellow solid; mp: 93–95 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): δ = 0.93 (t, 3H, J=7.2 Hz, n-But), 1.39-1.45 (m, 2H, n-But), 1.56-1.62 (m, 2H, n-But), 2.12 (s, 3H, CH$_3$), 3.13 and 3.14 (2s, 3H, NCH$_3$), 3.22-3.27 (m, 2H, n-But), 5.12 (s, 2H, OCH$_2$Ph), 7.26-7.36 (m, 5H, Ph), 8.59, (brs, 1H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): δ = 13.6 (q), 18.5 (t), 20.1 (q), 31.5 (t), 32.5 (t), 43.4 (t), 65.3 (t), 99.3 (s), 127.6 (d), 127.8 (d), 128.4 (d), 136.5 (s), 164.1 (s), 168.4 (s), 195.0 (s), 202.9 (s); IR (nujol): ν_{max} = 3272, 3163, 1685, 1622 cm$^{-1}$; MS m/z (ESI): 321.36 (M + H$^+$); anal. calcd. for C$_{17}$H$_{24}$N$_2$O$_2$S (320.45): C 63.72, H 6.53, N 8.74; found: C 63.57, H 6.56, N 8.81.

Methyl 3-(butylamino)-2-((4-chlorophenyl)carbamothioyl)pent-2-enoate 5j.

5j was isolated by precipitation in methanol in 66% yield. Light yellow solid; mp: 102–105 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): δ = 0.95 (t, 3H, J=7,2 Hz, n-But), 1.27 (t, 3H, J=7,2 Hz, CH$_2$CH$_3$), 1.47 (sex, 2H, J=7,6 Hz, n-But), 1.63-1.70 (m, 2H, J=7,2 Hz, CH$_2$CH$_3$), 3.37 (q, 2H, J=6,4 Hz, n-But), 3.74 (s, 3H, OCH$_3$), 7.33 (d, 2H, J=8.4 Hz, Ph), 7.53 (d, 2H, J=8.4 Hz, Ph), 9.58, 9.63, 10.48 and 11.90 (4brs, 2H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): δ = 12.6 (q), 13.6 (q), 20.0 (t), 20.1 (t), 25.2 (t), 30.8 (q), 31.6 (q), 43.2 (t), 51.1 (q), 51.2 (q), 99.8 (s), 123.4 (d), 126.1 (d), 126.3 (d), 128.6 (d), 130.0 (s), 131.2 (s), 137.9 (s), 166.6 (s), 169.7 (s), 170.0 (s), 180.5 (s), 199.2 (s), 199.2 (s), 201.5 (s); IR (nujol): ν_{max} = 3289, 3267, 1654, 1632 cm$^{-1}$; MS m/z (ESI): 355.58 (M + H$^+$); anal. calcd. for C$_{17}$H$_{23}$ClN$_2$O$_2$S (354.89): C 57.53, H 6.53, N 7.89; found: C 57.39, H 6.49, N 8.01.
Ethyl 3-(butylamino)-2-(phenylcarbamothioyl)hex-2-enoate 5k.

5k was purified by chromatography on silica gel column and successively crystallized in methanol with 57% yield. Light yellow solid; mp: 88–91 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 0.95 (t, 3H, J=7.2 Hz, n-But), 1.01 (t, 3H, J=7.2 Hz, prop), 1.31 (t, 3H, J=7.2 Hz, OCH₂CH₃), 1.42-1.52 (m, 2H, prop), 1.56-1.74 (m, 4H, n-But), 2.51-2.55 (m, 2H, prop), 3.34 (q, 2H, J= 5.6 Hz, n-But), 3.81-3.84 and 4.20 (m, and q, 2H, J=6.8 Hz, OCH₂CH₃), 7.04-7.57 (m, 5H, Ph), 9.57, 9.71, 10.27 and 11.71 (4brs, 2H, NH); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 13.7 (q), 14.3 (q), 20.2 (q), 21.9 (t), 31.8 (t), 33.7 (t), 43.2 (t), 60.1 (t), 97.1 (s), 100.4 (s), 121.6 (s), 124.9 (d), 126.2 (s), 128.6 (d), 129.0 (s), 139.4 (s), 165.7 (s), 166.3 (s), 168.0 (s), 169.5 (s), 192.6 (s), 192.7 (s), 192.8 (s), 201.4 (s); IR (nujol): νmax = 3282, 3214, 1649, 1616 cm⁻¹; MS m/z (ESI): 349.29 (M + H⁺); anal. calcd. for C₁₉H₂₈N₂O₂S (348.50): C 65.48, H 8.10, N 8.04; found: C 65.39, H 8.06, N 8.16.

5 One-pot procedure for synthesis of 2,5-dihydrothiophenes 7a-w

n-Butyl amine 1a (0.5 mmol) was added to β-ketoesters 2a-i (0.55 mmol) under solvent-free conditions and vigorously stirred at room temperature. After 0.5 h aryl isothiocyanates 4a-c (0.5mmol) in MeOH (1.5 mL) were added and the reactions were stirred until the disappearance of the enamino esters 3 (6.0-18.0h monitored by TLC). DDs 6a-k (1.0 mmol) in MeOH (2.0 mL) were added to the reaction medium and magnetically stirred until the complete disappearance of the ACTs 5 (3.0-5.0 h monitored by TLC). Then, the reaction solvent was evaporated under reduced pressure and the desired 2,5-dihydrothiophenes 7a-w were purified by chromatography on silica gel column (elution mixture: cyclohexane: ethyl acetate).
6 Spectral data of 2,5-dihydrothiophenes 7a-w.

4-Ethyl-2-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7a.

7a was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 64% yield. White solid; mp: 136–139 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 1.30\) (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.45 (s, 9H, C(CH\(_3\))\(_3\)), 1.84 (s, 3H, CH\(_3\)), 2.13 (s, 3H, CH\(_3\)), 3.73 (s, 3H, OCH\(_3\)), 4.33 (q, 2H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 6.97 (d, 2H, \(J = 7.2\) Hz, Ph), 7.18 (t, 1H, \(J = 7.6\) Hz, Ph), 7.40 (t, 2H, \(J = 7.6\) Hz, Ph), 9.88 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 13.4\) (q), 13.9 (q), 15.4 (q), 27.9 (q), 53.4 (q), 61.4 (t), 75.4 (s), 79.7 (s), 119.6 (d), 125.2 (d), 129.3 (d), 135.7 (s), 145.9 (s), 150.2 (s), 152.6 (s), 156.5 (s), 163.1 (s), 163.2 (s), 167.8 (s); IR (nujol): \(\nu_{\text{max}} = 3227, 1739, 1695, 1636\) cm\(^{-1}\); MS m/z (ESI): 476.29 (M + H\(^+\)); anal. calcd. for C\(_{23}\)H\(_{29}\)N\(_3\)O\(_6\)S (475.56): C 58.09, H 6.15, N 8.84; found: C 58.21, H 6.17, N 8.70.

Diethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7b.

7b was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 60 % yield. White solid; mp: 136–139 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 1.21\) (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.29 (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.44 (s, 9H, C(CH\(_3\))\(_3\)), 1.84 (s, 3H, CH\(_3\)), 2.13 (s, 3H, CH\(_3\)), 4.16–4.24 (m, 2H, OCH\(_2\)CH\(_3\)), 4.32 (q, 2H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 6.98 (d, 2H, \(J = 7.6\) Hz, Ph), 7.17 (t, 1H, \(J = 7.6\) Hz Ph), 7.40 (t, 2H, \(J = 8.0\) Hz, Ph), 9.90 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 13.5\) (q), 13.7 (q), 14.0 (q), 15.5 (q), 27.9 (q), 61.5 (t), 62.5 (t), 75.5 (s), 79.7 (s), 119.6 (d), 125.2 (d), 129.4 (d), 135.7 (s), 145.8 (s), 150.3 (s), 152.6 (s), 156.6 (s), 163.2 (s), 163.3 (s), 167.2 (s); IR (nujol): \(\nu_{\text{max}} = 3230,1731,1693,1636\) cm\(^{-1}\); MS m/z (ESI): 490.59 (M + H\(^+\)); anal. calcd. for C\(_{24}\)H\(_{31}\)N\(_3\)O\(_6\)S (489.58): C 58.88, H 6.38, N 8.58; found: C 58.76, H 6.35, N 8.65.
4-Ethyl-2-methyl 2-(1-(2-carbamoylhydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7c.

7c was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 56 % yield. Pale yellow solid; mp: 165–169 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 1.29\) (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.83 (s, 3H, CH\(_3\)), 2.10 (s, 3H, CH\(_3\)), 3.75 (s, 3H, OCH\(_3\)), 4.32 (q, 2H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 6.12 (brs, 2H, NH\(_2\)), 6.98 (dd, 2H, \(J = 8.4\) Hz, \(J = 1.2\) Hz, Ph), 7.18 (t, 1H, \(J = 7.6\) Hz, Ph), 7.40 (t, 2H, \(J = 7.6\) Hz, Ph), 9.55 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 13.0\) (q), 14.0 (q), 15.3 (q), 53.5 (q), 61.6 (t), 75.2 (s), 119.6 (d), 125.3 (d), 129.4 (d), 135.8 (s), 142.4 (s), 150.2 (s), 156.3 (s), 163.1 (s), 163.2 (s), 167.8 (s); IR (nujol): \(\nu_{\text{max}} = 3412, 3278, 3243, 1753, 1644, 1623\) cm\(^{-1}\); MS \(m/z\) (ESI): 419.02 (M + H\(^{+}\)); anal. calcd. for C\(_{19}\)H\(_{22}\)N\(_4\)O\(_5\)S (418.47): C 54.53, H 5.30, N 13.39; found: C 54.63, H 5.33, N 13.27.

4-Ethyl-2-methyl 3-methyl-2-(1-(2-phenylcarbomoyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7d.

7d was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 51 % yield. Pale yellow solid; mp: 137–139 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 1.30\) (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.93 (s, 3H, CH\(_3\)), 2.18 (s, 3H, CH\(_3\)), 3.82 (s, 3H, OCH\(_3\)), 4.36 (q, 2H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 6.99-7.04 (m, 3H, Ph), 7.18 (t, 1H, \(J = 7.6\) Hz, Ph), 7.31 (t, 2H, \(J = 7.6\) Hz, Ph), 7.40 (dt, 2H, \(J = 7.6\) Hz, \(J = 0.8\) Hz,Ph), 7.46 (dd, 2H, \(J = 8.4\) Hz, \(J = 0.8\) Hz, Ph), 8.28 (s, 1H, NH), 10.05 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 13.5\) (q), 14.0 (q), 15.4 (q), 53.7 (q), 61.7 (t), 75.2 (s), 119.7 (d), 122.6 (d), 125.3 (d), 128.9 (d), 129.4 (d), 136.0 (s), 138.4 (s), 144.1 (s), 150.3 (s), 152.3 (s), 156.2 (s), 163.1 (s), 163.2 (s), 167.7 (s); IR (nujol): \(\nu_{\text{max}} = 3357, 3241, 1707,
1698, 1653 cm\(^{-1}\); MS \(m/z\) (ESI): 495.76 (M + H\(^+\)); anal. calcd. for C\(_{25}\)H\(_{26}\)N\(_4\)O\(_5\)S (494.56): C 60.71, H 5.30, N 11.33; found: C 60.57, H 5.26, N 11.45.

Ethyl 5-(dimethylcarbamoyl)-4-methyl-5-((-1-(2(phenylcarbamoyl)hydrazono)ethyl))-2-(phenylimino)-2,5-dihydrothiophene-3-carboxylate 7e.

7e was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 51 % yield. Pale yellow solid; mp: 125–127 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 1.39\) (t, 3H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 2.04 (s, 3H, CH\(_3\)), 2.23 (s, 3H, CH\(_3\)), 2.81 (s, 3H, NCH\(_3\)), 3.05 (s, 3H, NCH\(_3\)), 4.42 (q, 2H, \(J = 7.2\) Hz, OCH\(_2\)CH\(_3\)), 7.05 (d, 2H, \(J = 7.6\) Hz, Ph), 7.10 (t, 1H, \(J = 7.2\) Hz, Ph), 7.17 (t, 1H, \(J = 7.2\) Hz, Ph), 7.32–7.40 (m, 4H, Ph), 7.43 (d, 2H, \(J = 7.6\) Hz, Ph), 8.01 (s, 1H, NH); \(^13\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 13.3\) (q), 14.2 (q), 16.6 (q), 36.8 (q), .39.0 (q), 61.9 (t), 73.8 (s), 119.0 (d), 120.1 (d), 123.7 (d), 125.3 (d), 129.2 (d), 135.6 (s), 137.5 (s), 144.7 (s), 150.8 (s), 153.4 (s), 159.2 (s), 163.0 (s), 163.8 (s), 167.2 (s); IR (nujol): \(\nu_{\text{max}} = 3374, 3239, 1754, 1636, 1625\) cm\(^{-1}\); MS \(m/z\) (ESI): 508.72 (M + H\(^+\)); anal. calcd. for C\(_{26}\)H\(_{29}\)N\(_5\)O\(_4\)S (507.60): C 61.52, H 5.76, N 13.80; found: C 61.64, H 5.79, N 13.72.

4-Ethyl 2-methyl 5-((4-methoxyphenyl)imino)-3methyl-1-(2-(phenylcarbamoyl)hydrazono)ethyl)-2,5-dihydrothiophene-2,4-dicarboxylate 7f.

7f was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 51 % yield. White solid; mp: 133–139 °C; \(^1\)H NMR (400 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 1.23\) (t, 3H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 1.91 (s, 3H, CH\(_3\)), 2.15 (s, 3H, CH\(_3\)), 3.76 (s, 3H, OCH\(_3\)), 3.86 (s, 3H, OCH\(_3\)), 4.25-4.31 (q, 2H, \(J = 7.2\) Hz OCH\(_2\)CH\(_3\)), 6.96-7.05 (m, 5H, Ph), 7.31 (t, 2H, \(J = 7.6\) Hz, Ph), 7.44 (d, 2H, \(J = 7.6\) Hz, Ph), 7.48 (d, 2H, \(J = 7.6\) Hz, Ph), 7.50 (d, 2H, \(J = 7.6\) Hz, Ph), 7.52 (d, 2H, \(J = 7.6\) Hz, Ph), 7.54 (d, 2H, \(J = 7.6\) Hz, Ph), 7.56 (d, 2H, \(J = 7.6\) Hz, Ph), 7.58 (d, 2H, \(J = 7.6\) Hz, Ph), 7.60 (d, 2H, \(J = 7.6\) Hz, Ph), 7.62 (d, 2H, \(J = 7.6\) Hz, Ph), 7.64 (d, 2H, \(J = 7.6\) Hz, Ph), 7.66 (d, 2H, \(J = 7.6\) Hz, Ph), 7.68 (d, 2H, \(J = 7.6\) Hz, Ph), 7.70 (d, 2H, \(J = 7.6\) Hz, Ph), 7.72 (d, 2H, \(J = 7.6\) Hz, Ph), 7.74 (d, 2H, \(J = 7.6\) Hz, Ph), 7.76 (d, 2H, \(J = 7.6\) Hz, Ph), 7.78 (d, 2H, \(J = 7.6\) Hz, Ph), 7.80 (d, 2H, \(J = 7.6\) Hz, Ph), 7.82 (d, 2H, \(J = 7.6\) Hz, Ph), 7.84 (d, 2H, \(J = 7.6\) Hz, Ph), 7.86 (d, 2H, \(J = 7.6\) Hz, Ph), 7.88 (d, 2H, \(J = 7.6\) Hz, Ph), 7.90 (d, 2H, \(J = 7.6\) Hz, Ph), 7.92 (d, 2H, \(J = 7.6\) Hz, Ph), 7.94 (d, 2H, \(J = 7.6\) Hz, Ph), 7.96 (d, 2H, \(J = 7.6\) Hz, Ph), 7.98 (d, 2H, \(J = 7.6\) Hz, Ph), 8.00 (s, 1H, NH); \(^13\)C NMR (100 MHz, DMSO\(_{d6}\), 25 °C): \(\delta = 13.3\) (q), 14.2 (q), 16.6 (q), 36.8 (q), .39.0 (q), 61.9 (t), 73.8 (s), 119.0 (d), 120.1 (d), 123.7 (d), 125.3 (d), 129.2 (d), 135.6 (s), 137.5 (s), 144.7 (s), 150.8 (s), 153.4 (s), 159.2 (s), 163.0 (s), 163.8 (s), 167.2 (s); IR (nujol): \(\nu_{\text{max}} = 3374, 3239, 1754, 1636, 1625\) cm\(^{-1}\); MS \(m/z\) (ESI): 508.72 (M + H\(^+\)); anal. calcd. for C\(_{26}\)H\(_{29}\)N\(_5\)O\(_4\)S (507.60): C 61.52, H 5.76, N 13.80; found: C 61.64, H 5.79, N 13.72.
7.6 Hz, Ph), 8.27 (s, 1H, NH), 10.0 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_d$$_6$, 25 °C): $\delta =$ 13.5 (q), 13.8 (q), 15.4 (q), 52.7 (q), 55.2 (q), 62.7 (t), 75.3 (s), 114.6 (d), 118.5 (d), 121.4 (d), 122.7 (d), 128.9 (d), 136.0 (s), 143.0 (s), 144.2 (s), 152.3 (s), 155.6 (s), 157.0 (s), 161.6 (s), 163.9 (s), 167.2 (s); IR (nujol): ν_{max} = 3349, 3208, 1733, 1675, 1649 cm$^{-1}$; MS m/z (ESI): 525.79 (M + H$^+$); anal. calcd. for C$_{26}$H$_{28}$N$_4$O$_6$S (524.59): C 59.53, H 5.38, N 10.68; found: C 59.38, H 5.34, N 10.79.

4-Ethyl-2-methyl 5-((4-chlorophenyl)imino)-2-(1-(2(methoxycarbonyl)hydrazono)ethyl)-3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7g.

7g was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 63 % yield. White solid; mp: 106–109 °C; 1H NMR (400 MHz, DMSO$_d$$_6$, 25 °C): $\delta =$ 1.29 (t, 3H, $J =$ 7.6 Hz, OCH$_2$CH$_3$), 1.85 (s, 3H, CH$_3$), 2.13 (s, 3H, CH$_3$), 3.67 (s, 3H, OCH$_3$), 3.73 (s, 3H, OCH$_3$), 4.33 (q, 2H, $J =$ 7.2 Hz, OCH$_2$CH$_3$), 7.02 (d, 2H, $J =$ 8.8 Hz, Ph), 7.44 (d, 2H, $J =$ 8.4 Hz Ph), 10.30 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_d$$_6$, 25 °C): $\delta =$ 13.3 (q), 14.0 (q), 15.4 (q), 52.1 (q), 53.5 (q), 61.6 (t), 75.6 (s), 121.6 (d), 129.4 (s), 129.4 (d), 135.8 (s), 146.7 (s), 149.0 (s), 154.2 (s), 157.0 (s), 163.0 (s), 164.2 (s), 167.6 (s); IR (nujol): ν_{max} = 3257, 1749, 1686 cm$^{-1}$; MS m/z (ESI): 468.76 (M + H$^+$); anal. calcd. for C$_{20}$H$_{22}$ClN$_3$O$_6$S (467.92): C 51.34, H 4.74, N 8.98; found: C 51.18, H 4.69, N 9.13.

Dimethyl 2-(1-((2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7h.

7h was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 68% yield. White solid; mp: 151–153 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): $\delta =$ 1.50 (s, 9H, C(CH$_3$)$_3$), 1.83 (s, 3H, CH$_3$), 2.24 (s, 3H, CH$_3$), 3.80 (s, 3H, OCH$_3$), 3.93 (s, 3H, OCH$_3$), 7.04 (d, 2H, $J =$ 8.0 Hz, Ph), 7.15 (t, 1H, $J =$ 7.2 Hz, Ph), 7.35 (t, 2H, $J =$ 7.6 Hz, Ph), 7.85 (s, 1H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): $\delta =$ 12.3 (q), 16.2 (q), 28.2 (q), 52.7 (q), 64.4 (q), 75.1 (s), 81.7 (s), 120.1 (d), 125.2
2-Ethyl-4-methyl 2-(1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7i.

7i was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 69 % yield. White solid; mp: 152–156 °C; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): δ = 1.30 (t, 3H, J = 7.2 Hz OCH$_2$CH$_3$), 1.50 (s, 9H, C(CH$_3$)$_3$), 1.83 (s, 3H, CH$_3$), 2.24 (s, 3H, CH$_3$), 3.92 (s, 3H, OCH$_3$), 4.26 (q, 2H, J = 7.2 Hz, OCH$_2$CH$_3$), 7.03 (dd, 2H, J = 8.4 Hz, J = 1.2 Hz, Ph), 7.14 (tt, 1H, J = 7.2 Hz, J = 1.2 Hz, Ph), 7.35 (t, 2H, J = 7.6 Hz, Ph), 7.91 (brs, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): δ = 12.5 (q), 14.0 (q), 16.2 (q), 28.2 (q), 52.6 (q), 62.7 (t), 75.2 (s), 81.6 (s), 120.1 (d), 125.1 (d), 129.1 (d), 135.9 (s), 144.8 (s), 150.9 (s), 152.4 (s), 157.8 (s), 163.8 (s), 164.3 (s), 167.6 (s); IR (nujol): ν_{max} = 3254, 1713, 1676, 1628 cm$^{-1}$; MS m/z (ESI): 476.38 (M + H$^+$); anal. calcd. for C$_{23}$H$_{29}$N$_3$O$_6$S (475.56): C 58.09, H 6.15, N 8.84; found: C 57.95, H 6.11, N 8.98.

Dimethyl 3-methyl 2-(1-(2(phenylcarbamoyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7j.

7j was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 51 % yield. Pale yellow solid; mp: 126–128 °C; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): δ = 1.91 (s, 3H, CH$_3$), 2.17 (s, 3H, CH$_3$), 3.81 (s, 3H, OCH$_3$), 3.87 (s, 3H, OCH$_3$), 6.98-7.05 (m, 3H, Ph), 7.19 (t, 1H, J = 7.2 Hz, Ph), 7.31 (t, 2H, J = 7.6 Hz, Ph), 7.38-7.46 (m, 4H, Ph), 8.27 (s, 1H, NH), 10.02 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): δ = 13.5 (q), 15.5 (q), 52.7 (q), 53.7 (q), 75.1 (s), 118.5
2-Benzyl-4-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7k.

7k was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 66% yield. White solid; mp: 135–137 °C; 1H NMR (400 MHz, DMSO_d6, 25 °C): δ = 1.45 (s, 9H, C(CH_3)_3), 1.85 (s, 3H, CH_3), 2.11 (s, 3H, CH_3), 3.85 (s, 3H, OCH_3), 5.21 (s, 2H, OCH_2Ph), 6.96 (dd, 2H, J = 8.4 Hz, J = 1.2 Hz, Ph), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.31-7.41 (m, 7H, Ph), 9.98 (s, 1H, NH); 13C NMR (100 MHz DMSO_d6, 25 °C): δ = 13.5 (q), 15.6 (q), 27.9 (q), 52.6 (q), 67.8 (t), 75.5 (s), 79.8 (s), 119.5 (d), 125.2 (d), 126.4 (d), 128.1 (d), 128.2 (d), 128.3 (d), 129.4 (d), 135.1 (s), 135.6 (s), 145.8 (s), 150.3 (s), 152.6 (s), 157.2 (s), 163.3 (s), 163.6 (s), 167.2 (s); IR (nujol): ν_{max} = 3216, 1735, 1722, 1634 cm^{-1}; MS m/z (ESI): 538.19 (M + H^+); anal. calcd. for C_{26}H_{31}N_3O_6S (537.63): C 62.55, H 5.81, N 7.82; found: C 62.71, H 5.83, N 7.71.

Dimethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)propyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7l.

7l was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 65% yield. White solid; mp: 120–124 °C; 1H NMR (400 MHz, DMSO_d6, 25 °C): δ = 0.96 (t, 3H, J = 7.6 Hz CH_2CH_3), 1.45 (s, 9H, C(CH_3)_3), 2.11 (s, 3H, CH_3), 2.11-2.18 (m, 1H, CH_2CH_3), 2.39-2.47 (m, 1H,
CH_2CH_3, 3.71 (s, 3H, OCH$_3$), 3.85 (s, 3H, OCH$_3$), 6.97 (dd, 2H, $J = 8.4$ Hz, $J = 1.2$ Hz, Ph), 7.18 (t, 1H, $J = 7.6$ Hz, Ph), 7.40 (t, 2H, $J = 7.6$ Hz, Ph), 10.05 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_d6$, 25 °C): $\delta = 10.5$ (q), 15.8 (q), 19.8 (t), 28.0 (q), 52.7 (q), 53.3 (q), 75.3 (s), 79.9 (s), 119.5 (d), 125.2 (d), 129.5 (d), 135.6 (s), 149.0 (s), 150.3 (s), 152.6 (s), 157.2 (s), 163.4 (s), 163.7 (s), 167.9 (s); IR (nujol): $\nu_{\text{max}} = 3220, 1749, 1715, 1654$ cm$^{-1}$; MS m/z (ESI): 476.29 (M + H$^+$); anal. calcd. for C$_{23}$H$_{29}$N$_3$O$_6$S (475.56): C 58.09, H 6.15, N 8.84; found: C 57.96, H 6.12, N 8.96.

2-Ethyl 4-iso-propyl 2-((1-(2-carbamoylhydrazono)ethyl)-3-methyl-5-((phenyl)imino)-2,5-dihydrothiophene-2,4-dicarboxylate 7m.

7m was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 52 % yield. White solid; mp: 170–173 °C; 1H NMR (400 MHz, CDCl$_3$, 25 °C): $\delta = 1.27$ (t, 3H, $J = 7.2$ Hz OCH$_2$CH$_3$), 1.35 (d, 6H, $J = 6.4$ Hz, CH(CH$_3$)$_2$), 1.90 (s, 3H, CH$_3$), 2.16 (s, 3H, CH$_3$), 4.23 (q, 2H, $J = 7.2$ Hz OCH$_2$CH$_3$), 5.29 (hept, 1H, $J = 6.4$ Hz, CH(CH$_3$)$_2$), 5.60 and 5.82 (2 brs, 2H, NH$_2$), 7.04 (dd, 2H, $J = 8.8$ Hz, $J = 1.2$ Hz, Ph), 7.13 (t, 1H, $J = 7.2$ Hz, Ph), 7.34 (d, 2H, $J = 8.4$ Hz Ph), 9.40 (s, 1H, NH); 13C NMR (100 MHz, CDCl$_3$, 25 °C): $\delta = 12.8$ (q), 14.0 (q), 15.4 (q), 27.8 (q), 62.6 (t), 69.7 (d), 75.3 (s), 120.1 (d), 125.1 (d), 129.1 (d), 136.9 (s), 144.7 (s), 150.6 (s), 155.0 (s), 157.9 (s), 163.1 (s), 163.3 (s), 167.5 (s); IR (nujol): $\nu_{\text{max}} = 3421, 3264, 3257, 1742, 1613, 1606$ cm$^{-1}$; MS m/z (ESI): 447.17 (M + H$^+$); anal. calcd. for C$_{21}$H$_{26}$N$_4$O$_5$S (446.52): C 56.49, H 5.87, N 12.55; found: C 56.37, H 5.89, N 12.68.

4-Tert-butyl 2-ethyl 2-((1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-5-((4-chlorophenyl)imino)-3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7n.
7n was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 68 % yield. Pale yellow solid; mp: 120–124 ºC; 1H NMR (400 MHz, CDCl3, 25 ºC): δ = 1.28 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.47 (s, 9H, C(CH₃)₃), 1.56 (s, 9H, C(CH₃)₃), 1.81 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 4.23 (q, 2H, J = 7.2 Hz OCH₂CH₃), 6.96 (d, 2H, J = 8.8 Hz, Ph), 7.27 (d, 2H, J = 8.8 Hz Ph), 8.46 (brs, 1H, NH); 13C NMR (100 MHz, CDCl₃, 25 ºC): δ = 12.4 (q), 13.9 (q), 15.8 (q), 28.1 (q), 62.6 (t), 75.4 (s), 81.4 (s), 83.0 (s), 121.4 (d), 129.9 (d), 130.1 (d), 137.1 (s), 144.8 (s), 149.3 (s), 152.7 (s), 155.9 (s), 162.8 (s), 164.4 (s), 167.5 (s); IR (nujol): νmax = 3255, 1736, 1685, 1624 cm⁻¹; MS m/z (ESI): 553.04 (M + H⁺); anal. calcd. for C₂₆H₃₄ClN₃O₆S (552.08): C 56.56, H 6.21, N 7.61; found: C 56.68, H 6.24, N 7.51.

4-Tert-butyl 2-ethyl 5-((4-chlorophenyl)imino)-2-((1-(2(methoxycarbonyl)hydrazono)ethyl)-3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7o.

7o was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 65 % yield. White solid; mp: 132–135 ºC; 1H NMR (400 MHz, CDCl₃, 25 ºC): δ = 1.28 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.56 (s, 9H, C(CH₃)₃), 1.81 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 3.75 (s, 3H, OCH₃), 4.16-4.34 (m, 2H, OCH₂CH₃), 6.95 (d, 2H, J = 8.4 Hz, Ph), 7.28 (d, 2H, J = 8.8 Hz, Ph), 8.43 (brs, 1H, NH); 13C NMR (100 MHz, CDCl₃, 25 ºC): δ = 12.0 (q), 13.9 (q), 15.7 (q), 28.2 (q), 53.0 (q), 62.8 (t), 75.4 (s), 83.2 (s), 121.7 (d), 129.2 (s), 130.3 (d), 137.8 (s), 146.2 (s), 149.3 (s), 154.3 (s), 155.4 (s), 162.9 (s), 164.2 (s), 167.4 (s); IR (nujol): νmax = 3243, 1741, 1703, 1612 cm⁻¹; MS m/z (ESI): 511.14 (M + H⁺); anal. calcd. for C₂₃H₂₈ClN₃O₆S (510.00): C 54.17, H 6.21, N 8.24; found: C 54.30, H 5.57, N 8.11.
4-Allyl 2-ethyl-2-(1-(2(carbamoylhydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7p.

7p was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 52 % yield. White solid; mp: 155−158 °C; 1H NMR (400 MHz, DMSO$_d$$_6$, 25 °C): δ = 1.19 (t, 3H, $J = 7.2$ Hz OCH$_2$CH$_3$), 1.84 (s, 3H, CH$_3$), 2.11 (s, 3H, CH$_3$), 4.18-4.26 (m, 2H, OCH$_2$CH$_3$), 4.82 (dt, 2H, $J = 5.2$ Hz, $J = 1.6$ Hz, OCH$_2$CH=CH$_2$), 5.27 (ddt, 1H, $J = 10.4$ Hz, $J = 1.6$ Hz, $J = 1.2$ Hz, OCH$_2$CH=CH$_2$), 5.46 (ddt, 1H, $J = 17.2$ Hz, $J = 1.6$ Hz, $J = 1.6$ Hz, OCH$_2$CH=CH$_2$), 5.94-6.04 (m, 1H, OCH$_2$CH=CH$_2$), 6.99 (dd, 2H, $J = 8.8$ Hz, Ph), 7.18 (t, 1H, $J = 7.6$ Hz Ph), 7.40 (t, 2H, $J = 8.0$ Hz, Ph), 9.56 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_d$$_6$, 25 °C): δ = 13.0 (q), 13.7 (q), 15.4 (q), 62.6 (t), 65.7 (t), 75.4 (s), 118.4 (t), 119.6 (d), 125.3 (d), 129.4 (d), 131.9 (d), 135.5 (s), 142.3 (s), 150.2 (s), 156.3 (s), 157.0 (s), 162.8 (s), 163.1 (s), 167.1 (s); IR (nujol): ν_{max} = 3476, 3316, 3197, 1739, 1732, 1695 cm$^{-1}$; MS m/z (ESI): 445.13 (M + H$^+$); anal. calcd. for C$_{21}$H$_{24}$N$_4$O$_5$S (444.50): C 56.74, H 5.44, N 12.60; found: C 56.63, H 5.40, N 12.71.

4-Allyl 2-tert-butyl-2-(1-(2-(tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7q.

7q was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 61 % yield. White solid; mp: 121−125 °C; 1H NMR (400 MHz, DMSO$_d$$_6$, 25 °C): δ = 1.43 (s, 9H, OC(CH$_3$)$_3$), 1.44 (s, 9H, OC(CH$_3$)$_3$), 1.83 (s, 3H, CH$_3$), 2.12 (s, 3H, CH$_3$), 4.81 (d, 2H, $J = 5.2$ Hz, OCH$_2$CH=CH$_2$), 5.27 (dd, 1H, $J = 10.4$ Hz, $J = 1.2$ Hz, OCH$_2$CH=CH$_2$), 5.46 (dd, 1H, $J = 17.2$ Hz, $J = 1.2$ Hz, OCH$_2$CH=CH$_2$), 5.94-6.04 (m, 1H, OCH$_2$CH=CH$_2$), 6.97 (d, 2H, $J = 8.0$ Hz, Ph), 7.18 (t, 1H, $J = 7.6$ Hz, Ph), 7.40 (t, 2H, $J = 7.6$ Hz, Ph), 9.82 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_d$$_6$, 25 °C): δ = 14.0 (q), 15.7 (q), 27.4 (q), 28.0 (q), 65.7 (t), 76.4 (s), 79.8 (s), 83.8 (s), 118.4 (t), 119.6 (d), 125.2 (d), 129.5 (d), 132.0 (d), 135.2 (s), 146.4 (s), 150.3 (s), 152.7 (s), 163.0 (s), 163.5 (s), 165.9 (s); IR (nujol): ν_{max} = 3235, 3172, 1739, 1732, 1765 cm$^{-1}$; MS m/z (ESI): 530.36 (M + H$^+$); anal. calcd. for C$_{27}$H$_{35}$N$_3$O$_6$S (529.65): C 61.23, H 6.66, N 7.93; found: C 61.10, H 6.64, N 8.02.
4-Benzyl-2-ethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7r.

7r was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 47% yield. White solid; mp: 109–113 °C; ^1H NMR (400 MHz, DMSO-d6, 25 °C): δ = 1.20 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.42 (s, 9H, C(CH₃)₃), 1.83 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 4.19 (q, 2H, J = 7.2 Hz, OCH₂CH₂Ph), 5.36 (s, 2H, OCH₂Ph), 6.99 (dd, 2H, J = 8.4 Hz, J = 1.2 Hz, Ph), 7.19 (t, 1H, J = 7.6 Hz, Ph), 7.34-7.43 (m, 5H, Ph), 7.47 (dd, 2H, J = 8.0 Hz, J = 1.6 Hz, Ph), 9.88 (s, 1H, NH); ^13C NMR (100 MHz, DMSO-d6, 25 °C): δ = 13.7 (q), 13.7 (q), 15.6 (q), 28.0 (q), 62.6 (t), 66.9 (t), 75.6 (s), 79.8 (s), 119.7 (d), 125.3 (d), 128.1 (d), 128.2 (d), 128.4 (d), 129.5 (d), 135.3 (s), 135.4 (s), 143.7 (s), 150.2 (s), 152.6 (s), 157.3 (s), 163.1 (s), 163.2 (s), 167.1 (s); IR (nujol): νₘₐₓ = 3255, 1751, 1681, 1643 cm⁻¹; MS m/z (ESI): 552.37 (M + H⁺); anal. calcd. for C₂₉H₃₃N₃O₆S (551.65): C 63.14, H 6.03, N 7.62; found: C 63.02, H 6.00, N 7.74.

4-Benzyl 2-ethyl 2-((1-(2-carbamoylhydrazono)ethyl)-3-methyl-5-((phenyl)imino)-2,5-dihydrothiophene-2,4-dicarboxylate 7s.

7s was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 44 % yield. Pale yellow solid; mp: 148–151 °C; ^1H NMR (400 MHz, CDCl₃, 25 °C): δ = 1.27 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.88 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 4.22 (dq, 2H, J = 7.2 Hz, J = 1.6 Hz, OCH₂CH₃), 5.38 (AB system, 2H, J = 12.4 Hz, OCH₂Ph), 5.78 (brs, 2H, NH₂), 7.05 (dd, 2H, J = 8.4 Hz, J = 1.2 Hz, Ph), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.34-7.40 (m, 5H, Ph), 7.46 (dd, 2H, J = 8.0 Hz, J = 1.6 Hz, Ph), 9.32 (s, 1H, NH); ^13C NMR (100 MHz, CDCl₃, 25 °C): δ = 12.9 (q), 14.0 (q), 15.7 (q), 62.6 (t), 67.5 (t), 75.3 (s), 120.1 (d), 125.2 (d), 128.3 (d), 128.4 (d), 128.5 (d), 129.1 (d), 135.2 (s), 136.2 (s), 144.5 (s), 150.6 (s), 156.5 (s), 157.7 (s), 163.1 (s), 163.6 (s), 167.4 (s); IR (nujol): νₘₐₓ = 3470, 3361, 3361.
3196, 1732, 1697, 1682 cm⁻¹; MS m/z (ESI): 495.36 (M + H⁺); anal. calcd. for C₂₅H₂₆N₄O₅S (494.56): C 60.71, H 5.30, N 11.33; found: C 60.86, H 5.34, N 11.21.

4-Ethyl-2-methyl 3-ethyl-2-(1-(2(methoxycarbonyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7t.

7t was isolated chromatography on by column silica gel (ethyl acetate/cyclohexane) in 48 % yield. White solid; mp: 136–139 ºC; ¹H NMR (400 MHz, DMSO_d6, 25 ºC): δ = 1.03 (t, 3H, J = 7.6 Hz CH₂CH₃), 1.29 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.85 (s, 3H, CH₃), 2.49-2.54 (m, 2H, CH₂CH₃), 3.67 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 4.33 (q, 2H, J = 7.2 Hz OCH₂CH₃), 6.98 (dd, 2H, J = 8.4 Hz, J = 1.2 Hz, Ph), 7.18 (t, 1H, J = 7.2 Hz Ph), 7.33 (t, 2H, J = 7.6 Hz Ph), 10.33 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO_d6, 25 ºC): δ = 12.5 (q), 13.9 (q), 14.0 (q), 22.6 (t), 52.1 (q), 53.4 (q), 61.6 (t), 75.5 (s), 119.6 (d), 125.3 (d), 129.5 (d), 135.9 (s), 147.1 (s), 150.4 (s), 154.2 (s), 161.8 (s), 163.5 (s), 163.8 (s), 168.1 (s); IR (nujol): ν_max = 3262, 1732, 1624, 1598 cm⁻¹; MS m/z (ESI): 448.24 (M + H⁺); anal. calcd. for C₂₁H₂₅N₃O₆S (447.50): C 56.36, H 5.63, N 9.39; found: C 56.45, H 5.66, N 9.32.

2-Ethyl-4-methyl 2-(1-(2(carbamoylhydrazono)ethyl)-5-((4-chlorophenyl)imino)-3-ethyl-2,5-dihydrothiophene-2,4-dicarboxylate 7u.

7u was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 46 % yield. Pale yellow solid; mp: 158–161 ºC; ¹H NMR (400 MHz, DMSO_d6, 25 ºC): δ = 1.00 (t, 3H, J = 7.6 Hz CH₂CH₃), 1.19 (t, 3H, J = 7.2 Hz OCH₂CH₃), 1.84 (s, 3H, CH₃), 2.48-2.58 (m, 2H, CH₂CH₃), 3.85 (s, 3H, OCH₃), 4.17-4.26 (m, 2H, OCH₂CH₃), 6.23 (brs, 2H, NH₂), 7.02 (d, 2H, J = 8.8 Hz, Ph), 7.45 (d, 2H, J = 8.8 Hz Ph), 9.62 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO_d6, 25 ºC): δ = 12.6 (q),
13.5 (q), 13.7 (q), 22.7 (t), 52.7 (q), 62.6 (t), 75.8 (s), 81.6 (s), 121.6 (d), 129.4 (s), 129.4 (d), 135.4 (s), 142.2 (s), 149.0 (s), 156.3 (s), 162.2 (s), 163.8 (s), 164.8 (s), 167.2 (s); IR (nujol): $\nu_{\text{max}} = 3446, 3321, 3223, 1747, 1730, 1684 \text{ cm}^{-1}$; MS m/z (ESI): 467.63 (M + H$^+$); anal. calcd. for C$_{20}$H$_{23}$ClN$_4$O$_5$S (466.94): C 51.44, H 4.96, N 12.00; found: C 51.36, H 4.97, N 12.11.

2-Ethyl-4-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-5-((4-chlorophenyl)imino)-3-ethyl-2,5-dihydrothiophene-2,4-dicarboxylate 7v.

7v was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 46 % yield. Pale yellow solid; mp: 107–109 °C; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): $\delta = 1.03$ (t, 3H, $J = 7.6$ Hz CH$_2$CH$_3$), 1.21 (t, 3H, $J = 7.2$ Hz OCH$_2$CH$_3$), 1.44 (s, 9H, C(CH$_3$)$_3$), 1.85 (s, 3H, CH$_3$), 2.52-2.57 (m, 2H, CH$_2$CH$_3$), 3.85 (s, 3H, OCH$_3$), 4.17-4.22 (m, 2H, OCH$_2$CH$_3$), 7.00 (d, 2H, $J = 8.8$ Hz, Ph), 7.44 (d, 2H, $J = 8.8$ Hz Ph), 9.92 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): $\delta = 12.4$ (q), 13.7 (q), 14.0 (q), 22.8 (t), 27.9 (q), 52.6 (q), 62.6 (t), 76.0 (s), 79.8 (s), 122.6 (d), 129.3 (s), 129.4 (d), 135.5 (s), 142.2 (s), 149.1 (s), 152.6 (s), 162.5 (s), 163.9 (s), 164.9 (s), 167.2 (s); IR (nujol): $\nu_{\text{max}} = 3223, 1717, 1684, 1621 \text{ cm}^{-1}$; MS m/z (ESI): 524.81 (M + H$^+$); anal. calcd. for C$_{24}$H$_{30}$ClN$_3$O$_6$S (524.03): C 55.01, H 6.77, N 8.02; found: C 54.95, H 6.79, N 8.15.

4-Ethyl-2-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-5-(phenylimino)-3-propyl-2,5-dihydrothiophene-2,4-dicarboxylate 7w.

7w was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 40% yield. White solid; mp: 142–144 °C; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): $\delta = 0.88$ (t, 3H, $J = 7.6$ Hz CH$_2$CH$_2$CH$_3$), 1.29 (t, 3H, $J = 7.2$ Hz OCH$_2$CH$_3$), 1.35-1.50 (m, 2H, CH$_2$CH$_2$CH$_3$), 1.44 (s, 9H, C(CH$_3$)$_3$), 1.84 (s, 3H, CH$_3$), 2.42-2.56 (m, 2H, CH$_2$CH$_2$CH$_3$), 3.72 (s, 3H, OCH$_3$), 4.32 (q, 2H, $J =$
7.2 Hz, OCH$_2$CH$_3$), 6.97 (dd, 2H, $J = 7.6$ Hz, $J = 0.8$ Hz, Ph), 7.18 (t, 1H, $J = 7.6$ Hz, Ph), 7.40 (t, 2H, $J = 7.6$ Hz, Ph), 9.92 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): δ = 13.9 (q), 14.1 (q), 14.4 (q), 21.4 (t), 28.0 (q), 31.6 (t), 53.4 (q), 61.5 (t), 75.6 (s), 79.8 (s), 119.6 (d), 125.2 (d), 129.4 (d), 135.8 (s), 146.2 (s), 150.3 (s), 152.6 (s), 159.4 (s), 163.4 (s), 163.7 (s), 168.0 (s); IR (nujol): ν_{max} = 3237, 1745, 1695, 1636 cm$^{-1}$; MS m/z (ESI): 504.45 (M + H$^+$); anal. calcd. for C$_{25}$H$_{33}$N$_3$O$_6$S (503.61): C 59.62, H 6.60, N 8.34; found: C 59.49, H 6.56, N 8.48.
General procedure for synthesis of 5-amino thiophene-2,4-dicarboxylates 8a-j.

To a solution of 2,5-dihydrothiophenes 7a-d,g-i,k,p-s,u,v (0.5 mmol) in acetone/water (90/10, 5.0 mL) Amberlyst 15 (4.0 equiv) was added and the reaction mixture was softly stirred at room temperature. At the disappearance of the starting 2,5-dihydrothiophenes 7 (2.0-4.0 h, monitored by TLC) the reaction solvent was evaporated under reduced pressure and the desired 2,5-5-amino thiophene-2,4-dicarboxylates 8a-j were purified by chromatography on silica gel column (elution mixture: cyclohexane: ethyl acetate).

Spectral data of 5-amino thiophene-2,4-dicarboxylates 8a-j.

4-Ethyl-2-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8a.

8a was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 82% yield from 7a, in 61% yield from 7c, and in 64% yield from 7d. White solid; mp: 136–138 °C; 1H NMR (400 MHz, CDCl3, 25 °C): δ = 1.42 (t, 3H, J = 7.2 Hz OCH2CH3), 2.77 (s, 3H, CH3), 3.81 (s, 3H, OCH3), 4.36 (q, 2H, J = 7.2 Hz, OCH2CH3), 7.15 (t, 1H, J = 7.2 Hz, Ph), 7.33-7.42 (m, 4H, Ph), 10.62 (s, 1H, NH); 13C NMR (100 MHz, CDCl3, 25 °C): δ = 14.3 (q), 16.0 (q), 51.5 (q), 60.4 (t), 108.1 (s), 109.2 (s), 119.9 (d), 124.3 (d), 129.6 (d), 139.8 (s), 147.8 (s), 162.4 (s), 163.2 (s), 166.9 (s); IR (nujol): \(\nu_{\text{max}} = 3217, 1714, 1650 \ \text{cm}^{-1} \); MS m/z (ESI): 320.08 (M + H+); anal. calcd. for C16H17NO4S (319.38): C 60.17, H 5.37, N 4.39; found: C 60.26, H 5.39, N 4.32.

Diethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8b.

8b was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 78% yield from 7b. White solid; mp: 106–108 °C; 1H NMR (400 MHz, CDCl3, 25 °C): δ = 1.34 (t, 3H, J = 7.2 Hz OCH2CH3), 1.41 (t, 3H, J = 7.2 Hz OCH2CH3), 2.76 (s, 3H, CH3), 4.28 (q, 2H, J = 7.2 Hz, OCH2CH3), 4.35 (q, 2H, J = 7.2 Hz, OCH2CH3), 7.12-7.41 (m, 5H, Ph), 10.62 (s, 1H, NH); 13C NMR (100 MHz, CDCl3, 25 °C): δ = 14.0 (q), 14.2 (q), 15.7 (q), 60.2 (t), 108.4 (s), 108.9 (s), 119.6 (d), 124.0 (d), 129.3 (d), 139.6 (s), 147.2 (s), 162.0 (s), 162.6 (s), 166.1 (s); IR (nujol): \(\nu_{\text{max}} = 3257, 1749, \)
4-Ethyl 2-methyl 5-((4-chlorophenyl)amino) 3-methylthiophene-2,4-dicarboxylate 8c.

8c was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 81% yield from 7g. White solid; mp: 140–141 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 1.42\) (t, 3H, \(J = 7.6\) Hz OCH\(_2\)CH\(_3\)), 2.77 (s, 3H, \(CH_3\)), 3.82 (s, 3H, O CH\(_3\)), 4.37 (q, 2H, \(J = 7.6\) Hz, OCH\(_2\)CH\(_3\)), 7.28 (d, 2H, \(J = 9.6\) Hz, Ph), 7.36 (d, 2H, \(J = 9.6\) Hz, Ph), 10.62 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 14.3\) (q), 16.0 (q), 51.6 (q), 60.6 (t), 108.6 (s), 109.6 (s), 121.2 (d), 129.4 (s), 129.6 (d), 138.4 (s), 147.8 (s), 162.0 (s), 163.1 (s), 166.9 (s); IR (nujol): \(\nu_{\text{max}} = 3160, 1704, 1652\) cm\(^{-1}\); MS m/z (ESI): 354.13 (M + H\(^+\)); anal. calcd. for C\(_{16}\)H\(_{16}\)ClNO\(_4\)S (353.82): C 54.31, H 4.56, N 3.96; found: C 54.42, H 4.61, N 3.88.

Dimethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8d.

8d was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 80% yield from 7h. White solid; mp: 135–137 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 2.75\) (s, 3H, \(CH_3\)), 3.81 (s, 3H, OCH\(_3\)), 3.90 (s, 3H, OCH\(_3\)), 7.15 (t, 1H, \(J = 7.2\) Hz, Ph), 7.34 (d, 2H, \(J = 7.6\) Hz, Ph), 7.40 (t, 2H, \(J = 7.2\) Hz, Ph), 10.58 (s, 1H, NH); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 15.9\) (q), 51.3 (q), 51.5 (q), 108.2 (s), 109.0 (s), 120.0 (d), 124.4 (d), 129.6 (d), 139.8 (s), 147.7 (s), 162.6 (s), 163.1 (s), 167.3 (s); IR (nujol): \(\nu_{\text{max}} = 3225, 1700, 1662\) cm\(^{-1}\); MS m/z (ESI): 306.18 (M + H\(^+\)); anal. calcd. for C\(_{15}\)H\(_{15}\)NO\(_4\)S (305.35): C 59.00, H 4.95, N 4.59; found: C 58.88, H 4.92, N 4.70.
2-Ethyl-4-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8e.

8e was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 78% yield from 7i. White solid; mp: 128–131 °C; 1H NMR (400 MHz, CDCl3, 25 °C): δ = 1.35 (t, 3H, J = 7.2 Hz OCH2CH3), 2.76 (s, 3H, CH3), 3.91 (s, 3H, OCH3), 4.29 (q, 2H, J = 7.2 Hz, OCH2CH3), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.35-7.44 (m, 4H, Ph), 10.55 (s, 1H, NH); 13C NMR (100 MHz, CDCl3, 25 °C): δ = 14.4 (q), 15.9 (q), 51.3 (q), 60.5 (t), 108.8 (s), 109.1 (s), 120.1 (d), 124.5 (d), 129.6 (d), 139.9 (s), 147.4 (s), 162.6 (s), 162.8 (s), 167.4 (s); IR (nujol): νmax = 3163, 1698, 1667 cm⁻¹; MS m/z (ESI): 320.05 (M + H⁺); anal. calcd. for C16H17NO4S (319.38): C 60.17, H 5.37, N 4.39; found: C 60.05, H 5.34, N 4.43.

2-Benzyl 4-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8f.

8f was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 81% yield from 7k. White solid; mp: 116–118 °C; 1H NMR (400 MHz, CDCl3, 25 °C): δ = 2.78 (s, 3H, CH3), 3.91 (s, 3H, OCH3), 5.29 (s, 2H, OCH2Ph), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.34-7.43 (m, 9H, Ph), 10.59 (s, 1H, NH); 13C NMR (100 MHz, CDCl3, 25 °C): δ = 16.0 (q), 51.4 (q), 66.0 (t), 108.2 (s), 109.2 (s), 120.1 (d), 124.5 (d), 128.0 (d), 128.1 (d), 128.5 (d), 129.6 (d), 136.2 (s), 139.8 (s), 148.1 (s), 162.6 (s), 162.8 (s), 167.3 (s); IR (nujol): νmax = 3221, 1695, 1666 cm⁻¹; MS m/z (ESI): 382.52 (M + H⁺); anal. calcd. for C21H19NO4S (381.44): C 66.12, H 5.02, N 3.67; found: C 65.98, H 4.98, N 3.72.
4-Allyl 2-ethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8g.

8g was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 83% yield from 7p. White solid; mp: 70–73 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 1.35\) (t, 3H, J = 7.2 Hz OCH\(_2\)CH\(_3\)), 2.79 (s, 3H, CH\(_3\)), 4.29 (q, 2H, J = 7.2 Hz, OCH\(_2\)CH\(_3\)), 4.83 (dt, 2H, J = 5.6 Hz, J = 1.2 Hz, OCH\(_2\)CH=CH\(_2\)), 5.31 (dd, 1H, J = 10.4 Hz, J = 1.2 Hz, OCH\(_2\)CH=CH\(_2\)), 5.46 (dd, 1H, J = 17.2 Hz, J = 1.2 Hz, OCH\(_2\)CH=CH\(_2\)), 6.00-6.10 (m, 1H, OCH\(_2\)CH=CH\(_2\)), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.34-7.43 (m, 4H, Ph); \(^13\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 16.4\) (q), 16.1 (q), 60.5 (t), 65.1 (t), 108.8 (s), 108.9 (s), 118.4 (t), 120.1 (d), 124.5 (d), 129.6 (d), 132.2 (d), 139.8 (s), 147.4 (s), 162.7 (s), 162.8 (s), 166.5 (s); IR (nujol): \(\nu_{\text{max}} = 3283, 1708, 1663\) cm\(^{-1}\); MS m/z (ESI): 346.11 (M + H\(^+\)); anal. calcd. for C\(_{18}\)H\(_{19}\)NO\(_4\)S (345.41): C 62.59, H 5.54, N 4.06; found: C 62.46, H 5.51, N 4.12.

![Structure of 8g](image)

4-Allyl 2-\textit{tert}-butyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8h.

8h was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 70% yield from 7q. White solid; mp: 120–124 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C): \(\delta = 1.56\) (s, 9H, OC(CH\(_3\))\(_3\)), 2.75 (s, 3H, CH\(_3\)), 4.82 (d, 2H, J = 5.2 Hz, OCH\(_2\)CH=CH\(_2\)), 5.31 (dd, 1H, J = 10.4 Hz, J = 0.8 Hz, OCH\(_2\)CH=CH\(_2\)), 5.42 (dd, 1H, J = 17.2 Hz, J = 1.2 Hz, OCH\(_2\)CH=CH\(_2\)), 6.00-6.10 (m, 1H, OCH\(_2\)CH=CH\(_2\)), 7.15 (t, 1H, J = 7.2 Hz, Ph), 7.34-7.42 (m, 4H, Ph); \(^13\)C NMR (100 MHz, CDCl\(_3\), 25 °C): \(\delta = 15.9\) (q), 28.4 (q), 65.0 (s), 81.3 (s), 108.9 (s), 110.6 (s), 118.2 (t), 120.0 (d), 124.3 (d), 129.6 (d), 132.2 (s), 139.9 (s), 146.2 (s), 162.3 (s), 166.6 (s); IR (nujol): \(\nu_{\text{max}} = 3257, 1749, 1686\) cm\(^{-1}\); MS m/z (ESI): 374.23 (M + H\(^+\)); anal. calcd. for C\(_{20}\)H\(_{23}\)NO\(_4\)S (373.47): C 64.32, H 6.21, N 3.75; found: C 64.39, H 6.24, N 3.77.

25
4-Benzyl 2-ethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8i.

8i was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 81% yield from 7r, and in 65% from 7s. White solid; mp: 117–119 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 1.34 (t, 3H, J = 7.2 Hz OCH₂CH₃), 2.77 (s, 3H, CH₃), 4.28 (q, 2H, J = 7.2 Hz, OCH₂CH₃), 5.38 (s, 2H, OCH₂Ph), 7.16 (t, 1H, J = 7.2 Hz, Ph), 7.33–7.46 (m, 9H, Ph), 10.54 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 14.4 (q), 60.5 (t), 66.2 (t), 108.8 (s), 108.9 (s), 120.2 (d), 124.5 (d), 128.1 (d), 128.3 (d), 128.7 (d), 135.9 (s), 139.8 (s), 147.4 (s), 16.2 (q), 22.3 (t), 51.5 (q), 60.6 (t), 108.5 (s), 108.8 (s), 121.4 (d), 129.5 (s), 129.7 (d), 138.5 (s), 153.7 (s), 162.3 (s), 162.6 (s), 167.1 (s); IR (nujol): νmax = 3257, 1749, 1686 cm⁻¹; MS m/z (ESI): 396.38 (M + H⁺); anal. calcd. for C₂₂H₂₁NO₄S (395.47): C 66.82, H 5.35, N 3.54; found: C 66.95, H 5.38, N 3.59.

2-Ethyl 4-methyl 5-((4-chlorophenyl)amino) 3-ethylthiophene-2,4-dicarboxylate 8j.

8j was isolated by column chromatography on silica gel (ethyl acetate/cyclohexane) in 68% yield from 7u, and in 79% from 7v. White solid; mp: 149–151 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 1.19 (t, 3H, J = 7.6 Hz CH₂CH₃), 1.35 (t, 3H, J = 7.2 Hz OCH₂CH₃), 3.31 (q, 2H, J = 7.2 Hz, CH₂CH₃), 3.91 (s, 3H, O CH₃), 4.30 (q, 2H, J = 7.2 Hz, OCH₂CH₃), 7.30 (d, 2H, J = 8.8 Hz, Ph), 7.37 (d, 2H, J = 8.8 Hz, Ph), 10.58 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ = 14.4 (q), 14.8 (q), 22.3 (t), 51.5 (q), 60.6 (t), 108.5 (s), 108.8 (s), 121.4 (d), 129.5 (s), 129.7 (d), 138.5 (s), 153.7 (s), 162.3 (s), 162.6 (s), 167.1 (s); IR (nujol): νmax = 3223, 1696, 1664 cm⁻¹; MS m/z (ESI): 368.42 (M + H⁺); anal. calcd. for C₁₇H₁₅ClNO₄S (367.85): C 55.51, H 4.93, N 3.81; found: C 55.37, H 4.97, N 3.89.
Spectral data of α-amino hydrazone 11.

Tert-butyl 2-(3-(butylamino)-4-methoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate.

was isolated by crystallization. Pale pink solid; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): $\delta = 0.84$ (q, 3H, $J = 7.2$ Hz, but), 1.24-1.38 (m, 4H, but), 1.44 (s, 9H, C(CH$_3$)$_3$), 1.75 (s, 3H, CH$_3$), 2.16 (brs, 1H, NH), 2.31-2.47 (m, 2H, but), 3.66 (s, 3H, OCH$_3$), 3.87 (s, 1H, OCH), 9.61 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): $\delta = 12.9$ (q), 13.8 (q), 19.8 (t), 28.1 (q), 31.6 (t), 46.7 (t), 51.9 (q), 67.4 (d), 79.2 (s), 149.6 (s), 153.0 (s), 171.5 (s); IR (nujol): $\nu_{\text{max}} = 3257, 3107, 1779, 1666$ cm$^{-1}$; MS m/z (ESI): 302.25 (M + H$^+$); anal. calcd. for C$_{14}$H$_{27}$N$_3$O$_4$ (301.38); C 55.79, H 9.03, N 13.94; found: C 55.90, H 9.06, N 13.88.

Spectral data of hydrazone 12.

Tert-butyl 2-(propan-2-ylidene)hydrazinecarboxylate.

White solid; 1H NMR (400 MHz, DMSO$_{d6}$, 25 °C): $\delta = 1.42$ (s, 9H, C(CH$_3$)$_3$), 1.77 (s, 3H, CH$_3$), 1.85 (s, 3H, CH$_3$), 9.31 (s, 1H, NH); 13C NMR (100 MHz, DMSO$_{d6}$, 25 °C): $\delta = 17.1$ (q), 24.9 (q), 28.1 (q), 151.1 (s), 153.2 (s), 155.6 (s);
\[^1\text{H} \text{ and } ^{13}\text{C} \text{ NMR spectra of 3-alkylamino-2-(carbamothioyl)but-2-enoates (ACTs) 5a-m.} \]

Ethyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5a.
Ethyl 3-(benzylamino)-2-(phenylcarbamothioyl)but-2-enoate 5b.
Ethyl 3-(phenethylamino)-2-(phenylcarbamothioyl)but-2-enoate 5c.
Ethyl 3-(sec-butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5d.
Ethyl 3-(isobutylamino)-2-(phenylcarbamothioyl)but-2-enoate 5e.
Methyl 3-(butylamino)-2-(phenylcarbamothioyl)but-2-enoate 5f.
Methyl 3-(butylamino)-2-((4-methoxyphenyl)carbamothioyl)but-2-enoate 5g.
Ethyl 3-(butylamino)-2-((4-chlorophenyl)carbamothioyl)but-2-enoate 5h.
Benzyl 3-(butylamino)-2-(methylcarbamothioyl)but-2-enoate 5i.
Methyl 3-(butylamino)-2-((4-chlorophenyl)carbamothioyl)pent-2-enoate 5j.
Ethyl 3-(butylamino)-2-(phenylcarbamothioyl)hex-2-enoate 5k.
1H and 13C NMR Spectra of 2,5-dihydrothiophenes 7a-w

4-Ethyl-2-methyl 2-(1-(2-tertbutoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7a.
Diethyl 2-(1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7b.
4-Ethyl-2-methyl 2-(1-(2-carbomoylhydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7c.
4-Ethyl-2-methyl 3-methyl-2-(1-(2-phenylcarbomoyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7d.
Ethyl 5-(dimethylcarbamoyl)-4-methyl-5-((1-(2(phenylcarbamoyl)hydrazono)ethyl)-2-(phenylimino)-2,5-dihydrothiophene-3-carboxylate 7e.
4-Ethyl 2-methyl 5-((4-methoxyphenyl)imino)-3methyl-1-(2-(phenylcarbamoyl)hydrazono)ethyl)-2,5-dihydrothiophene-2,4-dicarboxylate 7f.
4-Ethyl-2-methyl 5-((4-chlorophenyl)imino)-2-(1-(2(methoxycarbonyl)hydrazono)ethyl)-3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7g.
Dimethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7h.
2-Ethyl-4-methyl 2-(1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7i.
Dimethyl 3-methyl 2-(1-(2(phenylcarbamoyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7j.
2-Benzyl-4-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7k.
Dimethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)propyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7l.
2-Ethyl 4-iso-propyl 2-((1-(2-carbamoylhydrazono)ethyl)-3-methyl-5-((phenyl)imino)-2,5-dihydrothiophene-2,4-dicarboxylate 7m.
4-Tert-butyl 2-ethyl 2-((1-((2(tert-butoxycarbonyl)hydrazono)ethyl)-5-((4-chlorophenyl)imino)--3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7n.
4-Tert-buty1 2-ethyl 5-((4-chlorophenyl)imino)-2-((1-(2(methoxycarbonyl)hydrazono)ethyl)-3-methyl-2,5-dihydrothiophene-2,4-dicarboxylate 7o.
4-Allyl 2-tert-butyl-2-(1-(2(carbamoylhydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7p.
4-Allyl 2-tert-butyl-2-(1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7q.
4-Benzyl-2-ethyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-3-methyl-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7r.
4-Benzyl 2-ethyl 2-((1-(2-carbamoylhydrazono)ethyl)-3-methyl-5-((phenyl)imino)-2,5-dihydrothiophene-2,4-dicarboxylate 7s.
4-Ethyl-2-methyl 3-ethyl-2-(1-(2(metoxycarbonyl)hydrazono)ethyl)-5-(phenylimino)-2,5-dihydrothiophene-2,4-dicarboxylate 7t.
2-Ethyl-4-methyl 2-(1-(2(carbamoylhydrazono)ethyl)-5-((4-chlorophenyl)imino)-3-ethyl-2,5-dihydrothiophene-2,4-dicarboxylate 7u.
2-Ethyl-4-methyl 2-(1-(2(tert-butoxycarbonyl)hydrazono)ethyl)-5-((4-chlorophenyl)imino)-3-ethyl-2,5-dihydrothiophene-2,4-dicarboxylate 7v.
4-Ethyl-2-methyl 2-(1-(2-tert-butoxycarbonyl)hydrazono)ethyl)-5-(phenylimino)-3-propyl-2,5-dihydrothiophene-2,4-dicarboxylate 7w
13 \(^1\)H and \(^{13}\)C NMR spectra of 5-amino thiophene-2,4-dicarboxylates 8a-j.

4-Ethyl-2-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8a.
Diethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8b.
4-Ethyl 2-methyl 5-((4-chlorophenyl)amino) 3-methylthiophene-2,4-dicarboxylate 8c.
Dimethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8d.
2-Ethyl-4-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8e.
2-Benzyl 4-methyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8f.
4-Allyl 2-ethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8g.
4-3-Allyl 2-tert-buty 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate

8h.
4-Benzyl 2-ethyl 3-methyl-5-(phenylamino)thiophene-2,4-dicarboxylate 8i.
2-Ethyl 4-methyl 5-((4-chlorophenyl)amino) 3-ethylthiophene-2,4-dicarboxylate 8j.
1H and 13C NMR spectra of α-amino hydrazone 11
1H and 13C NMR spectra of hydrazone 12
16. References
