Expedient Synthesis of 9,10-Phenanthrenes via LiOPiv-Promoted and Palladium-Catalysed Aryne Annulation by Vinyl Triflates

Jun-Tao Hu, Bin Zheng, Ying-Chun Chen*, Qing Xiao*

Supporting Information
Table of Contents

Materials and Methods...S2
Table S1. Effect of base on the reaction of 1a... S3
Table S2. Effect of base on the reaction of 1s... S4
Table S3. Control Experiments of 1am.. S5
Table S4. Control Experiments of 1an and 1ao................................. S6
Table S5. The failed cyclic vinyl triflates used in this transformation...... S7
Preparation of Substrates.. S8
Synthesis of phenanthrenes... S12
Gram-scale Reaction for Preparation of 3a and 3s.................... S25
Friedel-Crafts cyclisation.. S26
References.. S27
1H, 13C and 19F NMR Spectra.. S28
Materials and Methods

General. All reactions dealing with air- and moisture-sensitive compounds were carried out in dry reaction vessels under a nitrogen atmosphere. \(^1 \)H and \(^{13} \)C nuclear magnetic resonance (NMR) spectra were recorded on Agilent 600 MHz NMR spectrometer. \(^1 \)H and \(^{13} \)C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl\(_3\) (77.0 ppm), respectively. ESI high-resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2. IR spectra were recorded in a PerkinElmer FT/IR-S100 spectrometer. Melting points were determined using a capillary melting point apparatus and are uncorrected.

Materials. Unless otherwise noted, materials were purchased from commercial suppliers and were used as received. Anhydrous MeCN was distilled over CaH\(_2\) and stored under N\(_2\).
Table S1. Effect of base on the reaction of 1a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Change of base</th>
<th>3a:4</th>
<th>Yield of 3a/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 equiv LiOAc</td>
<td>137:1</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>no base</td>
<td>7:1</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>1.0 equiv KOPiv</td>
<td>128:1</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>1.0 equiv CsOPiv</td>
<td>99:1</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>2.0 equiv CsOPiv</td>
<td>110:1</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>0.5 equiv CsOPiv</td>
<td>10:1</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>2.0 equiv LiOAc</td>
<td>132:1</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>2.0 equiv NaOAc</td>
<td>130:1</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>2.0 equiv KOPiv</td>
<td>127:1</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>2.0 equiv LiOAc</td>
<td>20:1</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>2.0 equiv NaOAc</td>
<td>14:1</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>2.0 equiv KOAc</td>
<td>28:1</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>2.0 equiv CsOAc</td>
<td>9:1</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>2.0 equiv Li2CO3</td>
<td>6:1</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>2.0 equiv Cs2CO3</td>
<td>8:1</td>
<td>62</td>
</tr>
</tbody>
</table>

a Determined by 1H NMR analysis of the crude reaction mixture.

b Yields of 3a determined by 1H NMR analysis against a known amount of 1,1,2,2-tetrachloroethane as an internal standard that was added to the reaction mixture following workup and immediately prior to preparation of the NMR sample.
Table S2. Effect of base on the reaction of 1s.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Yield of 3s/%a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiOPiv</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>No Base</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>NaOPiv</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>KOPiv</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>CsOPiv</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>LiOAc</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>NaOAc</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>KOAc</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>CsOAc</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>Li₂CO₃</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>K₂CO₃</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Cs₂CO₃</td>
<td>55</td>
</tr>
</tbody>
</table>

aDetermined by 1H NMR analysis of the crude reaction mixture. Yields of 3s determined by 1H NMR analysis against a known amount of 1,1,2,2-tetrachloroethane as an internal standard that was added to the reaction mixture following workup and immediately prior to preparation of the NMR sample.
We tried the following conditions and did not find the target product. In the following conditions, we found the by-product triphenylene, which was produced from benzyne precursor 2a, phenyl pivalate and tert-butoxybenzene.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>T/ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No base</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>LiOPiv</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>LiOPiv</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>LiOPiv</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>Cs₂CO₃</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>LiO'Bu</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>NaO'Bu</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>KO'Bu</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>LiN(TMS)₂</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>Cs₂CO₃</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>LiO'Bu</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>NaO'Bu</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>KO'Bu</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>LiN(TMS)₂</td>
<td>90</td>
</tr>
</tbody>
</table>
Table S4. Control Experiments of 1an and 1ao

We used these two substrates (1an, 1ao) to instead of 1a, but we did not find the 3a product at all.
Table S5. The Failed Cyclic Vinyl Triflates Used in the Transformation

Under Standard Conditions or enhance the reaction temperatures

![Chemical structures](image_url)
Preparation of Substrates

Synthesis of enol triflates

General procedure A\(^1\): To solution of Cyclohexanone derivative (5 mmol) in anhydrous THF (25 mL) was added LiHMDS (6 mL, 6 mmol, 1.0 M in THF, 1.2 equiv) at \(-78^\circ C\). After 1 h at \(-78^\circ C\) under an argon atmosphere, a solution of PhNTf\(_2\) (2.5 g, 7 mmol, 1.4 equiv) in anhydrous THF (5 mL) was slowly added to the mixture solution at \(-78^\circ C\). The mixture solution was allowed to warm to rt over a period of 4 h and stirred for additional 12 h. After the completion of the reaction, the resulting solution was treated with saturated aqueous NH\(_4\)Cl (10 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic solution was washed with saturated aqueous Na\(_2\)CO\(_3\) (20 mL), dried over anhydrous MgSO\(_4\), filtered and concentrated under reduced pressure. The residue oil was purified by flash column chromatography on silica gel to afford the product as a pale yellow oil.

Following the general procedure A to produce \(1c, 1o, 1p, 1q, 1r\).

General procedure B\(^2\): To a solution of Cyclohexanone derivative (5 mmol) in anhydrous CH\(_2\)Cl\(_2\) (15 mL) was added 2-chloropyridine (0.52 mL, 5.5 mmol, 1.1 equiv) at 0 °C. After 10 min at 0 °C, trifluoromethanesulfonic anhydride (1.0 mL, 6 mmol, 1.2 equiv) was added dropwise. The resulting solution was warmed to rt and stirred for 2 h under an argon atmosphere. After the completion of the reaction, the solution was concentrated and the resulting cherry-color oil was purified by flash column chromatography on silica gel to afford the product as a pale yellow oil.

Following the general procedure B to produce \(1a, 1b, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1ai, 1aj, 1al\).

General procedure C\(^3\): To solution of Cyclohexanone derivative (5 mmol) in anhydrous THF (25 mL) was added LDA (3 mL, 6 mmol, 2.0 M in THF, 1.2 equiv) at \(-78^\circ C\). After 1 h at \(-78^\circ C\) under an argon atmosphere, a solution of PhNTf\(_2\) (1.79 g, 5 mmol, 1.0 equiv) in anhydrous THF (5 mL) was slowly added to the mixture solution at \(-78^\circ C\). The mixture solution was allowed to warm to rt over a period of 4 h and stirred for additional 12 h. After the completion of the reaction, the resulting solution was treated with saturated aqueous NH\(_4\)Cl (10 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic solution was washed with saturated aqueous Na\(_2\)CO\(_3\) (20 mL), dried over anhydrous MgSO\(_4\), filtered and concentrated under reduced pressure. The residue oil was purified by flash column chromatography on silica gel to afford the product as a pale yellow oil.

Following the general procedure C to produce \(1k, 1l, 1m, 1n\).

General procedure D\(^4\):

Preparation of saturated aqueous LiOH solution.

55.14g of LiOH was dissolved in 460mL of deionized H2O to obtain a saturated solution (approximately 5M).

General Procedure for the Synthesis of \((Z)\)-Enol Triflates

The starting acetoacetate derivative (4 mmol) was added to a round-bottom flask and dissolved in either hexanes or toluene (20 mL, 0.2M). The solution was cooled with an ice bath to 5-10°C (internal temperature) followed by addition of a saturated aqueous solution of LiOH (6 mL, ~30
mmol) in one portion. The resulting biphasic mixture was vigorously stirred at 5-10°C for ~5 minutes followed by the addition of triflic anhydride (10 mmol) dropwise at a rate to maintain the internal temperature between 5-15 ºC. Upon completion of the reaction (as judged by TLC, typically <10 min), the biphasic solution was diluted with H2O (5mL) and the layers were separated. The aqueous layer was extracted with EtOAc (1 x 10mL). The combined organic layers were washed with H2O (1 x 5mL), brine (1 x 5mL), and dried over MgSO4. The organic layer was filtered and concentrated under reduced pressure to yield the corresponding crude (Z)-enol triflate.

Following the general procedure D to produce 1s, 1t, 1u, 1v, 1w, 1x, 1y, 1z, 1aa, 1ac, 1ad, 1ae, 1af, 1ag, 1ah.

Below are summarized characterization data for newly synthesized starting materials. 1H and 13C NMR spectra data for the known ones showed good agreement with the literature data.

1h

4-(tert-pentyl)cyclohex-1-en-1-yl trifluoromethanesulfonate (1h): Following the general procedure B; Colorless oil; 1H NMR (600 MHz, CDCl3): δ 5.77 – 5.72 (m, 1H), 2.42 – 2.34 (m, 1H), 2.34 – 2.28 (m, 1H), 2.19 – 2.10 (m, 1H), 1.99 – 1.94 (m, 1H), 1.91 – 1.88 (m, 1H), 1.45 – 1.33 (m, 2H), 1.32 – 1.25 (m, 2H), 0.83 – 0.80 (m, 9H).

1n

4-(1,4-dioxaspiro[4.5]decan-8-yl)cyclohexan-1-yl trifluoromethanesulfonate (1n): Following the general procedure C; Colorless oil; 1H NMR (600 MHz, CDCl3): δ 5.73 (m, 1H), 3.93 (m, 4H), 2.43 – 2.34 (m, 1H), 2.34 – 2.27 (m, 1H), 2.25 – 2.18 (m, 1H), 1.98 – 1.89 (m, 2H), 1.79 – 1.75 (m, 2H), 1.74 – 1.66 (m, 2H), 1.54 – 1.48 (m, 2H), 1.47 – 1.40 (m, 2H), 1.37 – 1.28 (m, 2H), 1.26 – 1.20 (m, 1H); 13C NMR (150 MHz, CDCl3): δ 149.10, 118.48 (q, 1J_C,F = 320.2 Hz), 118.00, 108.74, 64.21, 40.30, 37.13, 34.64, 27.86, 27.48, 27.22, 26.98, 26.19; HRMS (ESI): Calcd for C15H21F3O5S [M + Na]+ 393.0954, found 393.0955.

1t

ethyl (Z)-3-(p-tolyl)-3-(((trifluoromethyl)sulfonyl)oxy)acrylate (1t): Following the general procedure D; White solid; Mp = 57-58 ºC; 1H NMR (600 MHz, CDCl3): δ 7.47 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 6.21 (s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 1.35 (td, J = 7.2, 1.1 Hz).
Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 162.94, 155.25, 142.47, 129.72, 128.91, 126.38, 118.24 (q, $^J_{C-F} = 320.2$ Hz), 110.65, 61.33, 21.46, 14.05; HRMS (ESI): Calcd for C$_{12}$H$_{10}$F$_3$O$_5$S [M + Na]$^+$ 361.0328, found 361.0335.

![Chemical structure](image1)

1u

ethyl (Z)-3-(4-(trifluoromethyl)phenyl)-3-((trifluoromethyl)sulfonyl)oxy)acrylate (1u):

Following the general procedure D; White solid; Mp = 56-57 °C; 1H NMR (600 MHz, CDCl$_3$): δ 7.76 - 7.67 (m, 4H), 6.32 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 162.29, 153.18, 135.23 (q, J = 33.2 Hz), 126.83, 126.10 (q, 3J$_{C-F} = 3.6$ Hz), 123.34 (q, 2J$_{C-F} = 273.3$ Hz), 118.19 (q, 1J$_{C-F} = 320.2$ Hz), 113.66, 61.75, 13.99; HRMS (ESI): Calcd for C$_{12}$H$_{10}$F$_3$O$_5$S [M + H]$^+$ 415.0045, found 415.0045.

![Chemical structure](image2)

1w

ethyl (Z)-3-(4-nitrophenyl)-3-((trifluoromethyl)sulfonyl)oxy)acrylate (1w): Following the general procedure D; Yellow solid; Mp = 77-78 °C 1H NMR (600 MHz, CDCl$_3$): δ 8.35 - 8.30 (m, 2H), 7.80 - 7.74 (m, 2H), 6.38 (s, 1H), 4.33 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 162.03, 152.23, 149.42, 137.64, 127.47, 124.30, 118.17 (q, 1J$_{C-F} = 320.2$ Hz), 114.85, 61.92, 13.97; HRMS (ESI): Calcd for C$_{12}$H$_{10}$F$_3$O$_5$S [M + H]$^+$ 370.0205, found 370.0205.

![Chemical structure](image3)

1x

ethyl (Z)-3-(naphthalen-2-yl)-3-((trifluoromethyl)sulfonyl)oxy)acrylate (1x): Following the general procedure D; White solid; Mp = 51-52 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.11 (d, J = 1.9 Hz, 1H), 7.93 - 7.85 (m, 3H), 7.64 - 7.55 (m, 3H), 6.40 (s, 1H), 4.35 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 162.87, 155.06, 149.42, 137.64, 127.47, 124.30, 118.17 (q, 1J$_{C-F} = 320.2$ Hz), 114.85, 61.92, 13.97; HRMS (ESI): Calcd for C$_{16}$H$_{13}$F$_3$O$_5$S [M + Na]$^+$ 397.0328, found 397.0330.

![Chemical structure](image4)

1ad

ethyl (Z)-3-cyclopropyl-3-((trifluoromethyl)sulfonyl)oxy)acrylate (1ad): Following the general
procedure D; Colorless oil; 1H NMR (600 MHz, CDCl\textsubscript{3}): \(\delta\) 5.60 (s, 1H), 4.22 (q, \(J = 7.2\) Hz, 2H), 1.62 (qt, \(J = 9.8, 4.9, 4.4\) Hz, 1H), 1.29 (td, \(J = 7.2, 1.5\) Hz, 3H), 1.06 – 1.00 (m, 2H), 0.88 – 0.82 (m, 2H); 13C NMR (150 MHz, CDCl\textsubscript{3}): \(\delta\) 162.67, 160.60, 118.43 (q, \(^1J_{CF} = 320.2\) Hz), 108.82, 61.18, 14.76, 13.99, 8.35; HRMS (ESI): Calcd for C\textsubscript{9}H\textsubscript{11}F\textsubscript{3}O\textsubscript{5}S [M + H]+ 289.0352, found 289.1050.

\textbf{1ae}
ethyl (Z)-3-cyclobutyl-3-(((trifluoromethyl)sulfonyl)oxy)acrylate (1ae): Following the general procedure D; Colorless oil; 1H NMR (600 MHz, CDCl\textsubscript{3}): \(\delta\) 5.74 (s, 1H), 4.25 (q, \(J = 7.4\) Hz, 2H), 3.26 (p, \(J = 8.6\) Hz, 1H), 2.28 (qd, \(J = 8.3, 7.5, 3.9\) Hz, 2H), 2.14 – 2.05 (m, 2H), 1.91 – 1.82 (m, 1H), 1.30 (td, \(J = 7.2, 1.5\) Hz, 3H); 13C NMR (150 MHz, CDCl\textsubscript{3}): \(\delta\) 162.70, 161.76, 118.32 (q, \(^1J_{CF} = 320.2\) Hz), 110.01, 61.20, 38.05, 27.03, 17.68, 14.00; HRMS (ESI): Calcd for C\textsubscript{10}H\textsubscript{13}F\textsubscript{3}O\textsubscript{5}S [M + Na]+ 325.0328, found 325.0332.

\textbf{1af}
ethyl (Z)-3-cyclohexyl-3-(((trifluoromethyl)sulfonyl)oxy)acrylate (1af): Following the general procedure D; Colorless oil; 1H NMR (600 MHz, CDCl\textsubscript{3}): \(\delta\) 5.69 (s, 1H), 4.24 (q, \(J = 7.1\) Hz, 2H), 2.29 – 2.20 (m, 1H), 2.06 – 1.96 (m, 2H), 1.83 (dt, \(J = 13.1, 3.5\) Hz, 2H), 1.76 – 1.69 (m, 1H), 1.35 – 1.23 (m, 5H), 1.18 (dt, \(J = 11.7, 3.1\) Hz, 3H); 13C NMR (150 MHz, CDCl\textsubscript{3}): \(\delta\) 162.90, 162.79, 118.34 (q, \(^1J_{CF} = 320.2\) Hz), 109.96, 61.20, 42.64, 30.30, 25.61, 25.57, 13.99; HRMS (ESI): Calcd for C\textsubscript{12}H\textsubscript{17}F\textsubscript{3}O\textsubscript{5}S [M + H]+ 331.0822, found 330.9962.

\textbf{1ag}
ethyl (Z)-3-(tetrahydrofuran-2-yl)-3-(((trifluoromethyl)sulfonyl)oxy)acrylate (1ag): Following the general procedure D; Colorless oil; 1H NMR (600 MHz, CDCl\textsubscript{3}): \(\delta\) 6.12 (s, 1H), 4.51 (dd, \(J = 7.8, 5.5\) Hz, 1H), 4.29 – 4.20 (m, 2H), 4.00 – 3.94 (m, 1H), 3.91 – 3.84 (m, 1H), 2.25 – 2.17 (m, 1H), 2.04 – 1.90 (m, 3H), 1.30 (t, \(J = 7.2\) Hz, 3H); 13C NMR (150 MHz, CDCl\textsubscript{3}): \(\delta\) 162.61, 158.05, 118.35 (q, \(^1J_{CF} = 320.2\) Hz), 110.42, 76.38, 69.19, 61.29, 30.22, 25.03, 13.97; HRMS (ESI): Calcd for C\textsubscript{10}H\textsubscript{13}F\textsubscript{3}O\textsubscript{6}S [M + Na]+ 341.0277, found 341.0280.
(Z)-3-oxo-1,3-diphenylprop-1-en-1-yl trifluoromethanesulfonate (1ai): Following the general procedure B; Yellow solid; Mp = 80-81 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.01 (dd, J = 8.2, 1.4 Hz, 2H), 7.71 – 7.67 (m, 2H), 7.64 – 7.60 (m, 1H), 7.57 – 7.48 (m, 5H), 7.18 (s, 1H); 13C NMR (150 MHz, CDCl$_3$): δ 187.26, 153.89, 137.32, 133.72, 132.21, 131.82, 129.12, 128.80, 128.56, 126.64, 118.21 (q, $^{1}J_{C-F}$ = 320.2 Hz), 114.90; HRMS (ESI): Calcd for C$_{16}$H$_{11}$F$_{3}$O$_{4}$S [M + H]$^+$ 357.0403, found 356.9525.

(Z)-2-cyano-1-phenylvinyl trifluoromethanesulfonate (1aj): Following the general procedure B; Colorless oil; 1H NMR (600 MHz, CDCl$_3$): δ 7.63 – 7.57 (m, 3H), 7.51 (dd, J = 8.8, 7.1 Hz, 2H), 5.76 (s, 1H); 13C NMR (150 MHz, CDCl$_3$): δ 161.56, 133.11, 130.35, 129.45, 126.36, 118.23 (q, $^{1}J_{C-F}$ = 320.2 Hz), 112.46, 90.40; HRMS (ESI): Calcd for C$_{10}$H$_{6}$F$_{3}$NO$_{3}$S [M + Na]$^+$ 299.9913, found 299.9918.

Synthesis of phenanthrene

A General Procedure for Pd-catalyzed arylene annulation by enol triflates

A 10 mL of Schlenk tube equipped with a stirrer bar was charged with Pd$_2$(dba)$_3$ (5 mol %), tri-o-tolylphosphate (20 mol %), CsF (1.2 mmol, 6.0 equiv), and LiOPiv (0.2 mmol, 1.0 equiv) in the glove box. Then, the Schlenk tube removed from glove box and quickly evacuated and refilled with Ar for three times, followed by the addition of MeCN (3.2 mL), enol triflates (0.20 mmol, 1.0 equiv), and silylaryl triflate (0.60 mmol, 3.0 equiv). The Schlenk tube was sealed with a Teflon screwcap under Ar flow and the reaction mixture was stirred at 60 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (20 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product.

2,2-dimethyl-1,2,3,4-tetrahydrotriphenylene (3a): Following the general procedure; White solid
(87% yield, eluent = petroleum ether); Mp = 126-127 °C; \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.73 (dt, \(J = 6.2, 1.9\) Hz, 2H), 7.69 – 7.58 (m, 4H), 3.20 (ddt, \(J = 6.9, 5.1, 1.9\) Hz, 2H), 2.96 (s, 2H), 1.80 (t, \(J = 6.6\) Hz, 2H), 1.14 (s, 6H); \(^1\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 132.06, 131.71, 129.46, 129.40, 129.24, 128.88, 126.56, 126.51, 125.51, 125.49, 123.77, 122.73, 40.64, 35.36, 29.09, 28.43, 24.49; IR (neat): \(\nu\) (cm\(^{-1}\)) 3077, 2949, 2916, 2860, 2829, 1433; HRMS (ESI): Calcd for C\(_{20}\)H\(_{20}\) [M + H]\(^+\) 261.1638, found 261.1645.

3b

2-methyl-1,2,3,4-tetrahydrotriphenylene (3b): Following the general procedure; White solid (81% yield, eluent = petroleum ether); Mp = 111-112 °C; \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.76 – 8.67 (m, 2H), 8.14 – 8.03 (m, 2H), 7.62 (qd, \(J = 6.7, 3.5\) Hz, 4H), 3.32 (dd, \(J = 16.7, 4.8\) Hz, 2H), 3.18 – 3.07 (m, 1H), 2.69 (ddt, \(J = 16.7, 10.2, 2.0\) Hz, 1H), 2.16 – 2.10 (m, 1H), 2.06 – 1.97 (m, 1H), 1.61 – 1.55 (m, 1H), 1.24 (d, \(J = 6.6\) Hz, 3H); \(^1\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 131.81, 131.78, 129.99, 129.88, 129.31, 129.23, 126.54, 126.51, 125.48, 123.44, 123.34, 122.71, 35.47, 31.01, 28.88, 26.95, 22.13; IR (neat): \(\nu\) (cm\(^{-1}\)) 3073, 2947, 2919, 2863, 2829, 1433; HRMS (ESI): Calcd for C\(_{19}\)H\(_{18}\) [M + H]\(^+\) 247.1481, found 247.1488.

3c

1,2,3,4-tetrahydrotriphenylene (3c): Following the general procedure; White solid (77% yield, eluent = petroleum ether); Mp = 118-119 °C; \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.74 – 8.67 (m, 2H), 8.11 – 8.05 (m, 2H), 7.66 – 7.58 (m, 4H), 3.18 (h, \(J = 3.9, 3.1\) Hz, 4H), 2.01 (hept, \(J = 4.7\) Hz, 4H). \(^1\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 131.92, 130.26, 129.22, 126.53, 125.49, 123.29, 122.70, 26.87, 22.92; IR (neat): \(\nu\) (cm\(^{-1}\)) 3074, 2934, 2870, 2848, 1435; HRMS (ESI): Calcd for C\(_{18}\)H\(_{16}\) [M + H]\(^+\) 233.1325, found 233.1335.

3d

2-ethyl-1,2,3,4-tetrahydrotriphenylene (3d): Following the general procedure; White solid (63% yield, eluent = petroleum ether); Mp = 78-79 °C; \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.74 – 8.67 (m, 2H), 8.13 – 8.05 (m, 2H), 7.67 – 7.57 (m, 4H), 3.33 (td, \(J = 16.6, 4.6\) Hz, 2H), 3.13 – 3.05 (m, 1H),
2.71 (ddt, \(J = 16.7, 10.3, 2.1\) Hz, 1H), 2.20 (ddt, \(J = 13.0, 5.2, 2.4\) Hz, 1H), 1.79 (tdd, \(J = 11.4, 5.5, 3.0\) Hz, 1H), 1.64 – 1.56 (m, 2H), 1.54 – 1.49 (m, 1H), 1.11 (t, \(J = 7.5\) Hz, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta 131.90, 131.78, 130.17, 129.96, 129.31, 129.22, 126.53, 126.51, 125.47, 123.44, 123.31, 122.72, 122.70, 35.59, 33.38, 29.32, 28.60, 26.94, 11.61; \(\text{IR (neat): } \nu (\text{cm}^{-1}) 3072, 2956, 2925, 2869, 1434\); \(\text{HRMS (ESI): Calcd for } C_{20}H_{20}[M + H]^+ 261.1638, \text{found 261.1646.}\)

\[\text{3e} \]

\(2\text{-propyl-1,2,3,4-tetrahydrotriphenylene (3e): Following the general procedure; White solid (60\% yield, eluent = petroleum ether); Mp = 96-98 °C; }^{1}\text{H NMR (600 MHz, CDCl}_3\text{): } \delta 8.74 – 8.67 (m, 2H), 8.13 – 8.03 (m, 2H), 7.65 – 7.58 (m, 4H), 3.32 (td, \(J = 16.8, 4.6\) Hz, 2H), 3.14 – 3.06 (m, 1H), 2.76 – 2.68 (m, 1H), 2.18 (dd, \(J = 13.1, 5.5, 2.6\) Hz, 1H), 1.94 – 1.85 (m, 1H), 1.56 – 1.49 (m, 4H), 1.02 (t, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta 131.90, 131.78, 130.16, 129.97, 129.32, 129.23, 126.53, 126.51, 125.50, 125.47, 123.46, 123.33, 122.73, 122.69, 38.97, 33.69, 33.54, 29.04, 26.91, 20.18, 14.45; \(\text{IR (neat): } \nu (\text{cm}^{-1}) 3074, 2959, 2922, 2870, 2835, 1434\); \(\text{HRMS (ESI): Calcd for } C_{21}H_{22}[M + H]^+ 275.1794, \text{found 275.1803.}\)\)

\[\text{3f} \]

\(2\text{-pentyl-1,2,3,4-tetrahydrotriphenylene (3f): Following the general procedure; White solid (67\% yield, eluent = petroleum ether); Mp = 96-97 °C; }^{1}\text{H NMR (600 MHz, CDCl}_3\text{): } \delta 8.74 – 8.67 (m, 2H), 8.12 – 8.04 (m, 2H), 7.62 (dt, \(J = 17.0, 9.8, 5.6\) Hz, 1H), 2.61 (t, \(J = 15.4, 14.1, 4.6\) Hz, 2H), 3.09 (dddt, \(J = 17.0, 9.8, 6.7, 5.6\) Hz, 1H), 2.75 – 2.67 (m, 1H), 2.18 (dddt, \(J = 10.6, 5.6, 2.7\) Hz, 1H), 1.87 (d, \(J = 14.6, 3.4\) Hz, 1H), 1.53 (qd, \(J = 8.6, 8.0, 5.6\) Hz, 5H), 1.39 (ddt, \(J = 13.6, 9.4, 8.7, 5.2\) Hz, 4H), 0.96 (t, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta 131.90, 131.78, 130.16, 129.97, 129.32, 129.22, 126.53, 126.50, 125.47, 123.46, 123.33, 122.73, 122.69, 38.97, 33.69, 33.54, 29.04, 26.91, 20.18, 14.45; \(\text{IR (neat): } \nu (\text{cm}^{-1}) 3074, 2959, 2922, 2870, 2835, 1434\); \(\text{HRMS (ESI): Calcd for } C_{23}H_{26}[M + H]^+ 303.2107, \text{found 303.2115.}\)\)

\[\text{3g} \]

\(2\text{-}(\text{tert-butyl)-1,2,3,4-tetrahydrotriphenylene (3g): Following the general procedure; White solid} \)
(66% yield, eluent = petroleum ether); Mp = 121-122 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.75 – 8.66 (m, 2H), 8.15 – 8.03 (m, 2H), 7.67 – 7.57 (m, 4H), 3.38 (dd, $J = 16.8, 4.8$ Hz, 1H), 3.32 – 3.25 (m, 1H), 3.10 – 3.00 (m, 1H), 2.84 (tt, $J = 12.4, 2.1$ Hz, 1H), 2.25 (ddt, $J = 12.8, 5.6, 2.2$ Hz, 1H), 1.62 (tdd, $J = 12.0, 5.0, 2.2$ Hz, 1H), 1.47 (t, $J = 12.5, 4.9$ Hz, 1H), 1.09 (s, 9H);

13C NMR (150 MHz, CDCl$_3$): δ 132.10, 131.71, 130.44, 130.27, 129.33, 129.18, 126.53, 126.50, 125.47, 123.22, 122.76, 122.69, 44.38, 32.57, 28.52, 28.30, 27.37, 24.23; IR (neat): ν(cm$^{-1}$) 3077, 2949, 2866, 2839, 1492, 1433; HRMS (ESI): Calcd for C$_{22}$H$_{24}$ [M + H]$^+$ 289.1951, found 289.1959.

2-(tert-pentyl)-1,2,3,4-tetrahydrotriphenylene (3h): Following the general procedure; White solid (61% yield, eluent = petroleum ether); Mp = 74-76 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.74 – 8.68 (m, 2H), 8.09 (ddd, $J = 36.3, 7.0, 1.9$ Hz, 2H), 7.63 (dq, $J = 10.6, 6.9, 3.1$ Hz, 4H), 3.37 (dd, $J = 16.8, 4.8$ Hz, 1H), 3.28 – 3.21 (m, 1H), 3.10 – 3.01 (m, 1H), 2.92 – 2.84 (m, 1H), 2.21 (ddt, $J = 12.6, 5.7, 2.2$ Hz, 1H), 1.73 (tdd, $J = 12.1, 4.9, 2.2$ Hz, 1H), 1.55 – 1.43 (m, 3H), 1.04 (s, 6H), 0.93 (t, $J = 7.5$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 132.13, 131.73, 130.57, 130.32, 129.33, 129.18, 126.54, 126.51, 125.47, 123.45, 123.24, 122.77, 122.70, 41.76, 34.88, 32.62, 28.35, 28.12, 24.10, 23.96, 23.86, 8.28; IR (neat): ν(cm$^{-1}$) 3077, 2949, 2866, 2839, 1492, 1433; HRMS (ESI): Calcd for C$_{23}$H$_{26}$ [M + H]$^+$ 303.2107, found 303.2113.

2-phenyl-1,2,3,4-tetrahydrotriphenylene (3i): Following the general procedure; White solid (57% yield, eluent = petroleum ether); Mp = 181-182 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.73 (dt, $J = 7.8, 2.5$ Hz, 2H), 8.13 – 8.01 (m, 2H), 7.69 – 7.57 (m, 3H), 7.41 (d, $J = 3.3$ Hz, 3H), 7.31 (ddt, $J = 8.6, 6.1, 3.1$ Hz, 1H), 3.59 – 3.52 (m, 1H), 3.41 (ddd, $J = 17.1, 5.7, 2.6$ Hz, 1H), 3.31 – 3.11 (m, 3H), 2.39 (ddq, $J = 12.7, 5.5, 2.4$ Hz, 1H), 2.12 (qd, $J = 11.7, 5.4$ Hz, 1H); 13C NMR (150 MHz, CDCl$_3$): δ 146.75, 131.64, 131.60, 129.89, 129.78, 129.39, 129.35, 128.59, 127.05, 126.67, 126.65, 126.36, 125.70, 125.68, 123.52, 122.78, 40.46, 35.44, 29.60, 27.41; IR (neat): ν(cm$^{-1}$) 3072, 3031, 2925, 2879, 2835, 1494, 1433; HRMS (ESI): Calcd for C$_{24}$H$_{20}$ [M + H]$^+$ 309.1638, found 309.1290.
ethyl 1,2,3,4-tetrahydrotriphenylene-2-carboxylate (3j): Following the general procedure; White solid (80% yield, eluent = petroleum ether/EtOAc (50:1)); Mp = 127-129 °C; H NMR (600 MHz, CDCl3): δ 8.73 – 8.68 (m, 2H), 8.06 (ddd, J = 27.0, 6.7, 3.9 Hz, 2H), 7.63 (dt, J = 6.1, 3.3 Hz, 4H), 4.26 (qt, J = 6.8, 3.5 Hz, 2H), 3.51 (dd, J = 16.7, 5.3 Hz, 1H), 3.40 – 3.29 (m, 2H), 3.20 – 3.12 (m, 1H), 2.88 (dd, J = 10.9, 5.2, 2.8 Hz, 1H), 2.50 – 2.43 (m, 1H), 2.01 (qd, J = 11.9, 5.4 Hz, 1H), 1.35 (t, J = 7.2 Hz, 3H); C NMR (150 MHz, CDCl3): δ 175.67, 131.44, 131.37, 129.37, 129.35, 129.26, 128.37, 126.70, 126.60, 126.40, 123.35, 123.31, 123.27, 122.78, 122.76, 60.62, 39.90, 29.17, 26.35, 25.51, 14.33; IR (neat): ν (cm⁻¹) 3077, 2979, 2956, 2843, 1723, 1436, 1183; HRMS (ESI): Calcd for C21H20O2 [M + Na]+ 327.1356, found 327.1365.

3,4-dihydro-1H-dibenzo[1,4]isochromene (3k): Following the general procedure; White solid (91% yield, eluent = petroleum ether/EtOAc (30:1)); Mp = 131-133 °C; H NMR (600 MHz, CDCl3): δ 8.74 – 8.69 (m, 2H), 8.04 – 7.97 (m, 1H), 7.73 (dd, J = 7.9, 1.6 Hz, 1H), 7.68 – 7.58 (m, 4H), 5.25 (t, J = 1.8 Hz, 2H), 4.18 (t, J = 5.6 Hz, 2H), 3.21 (ddd, J = 7.7, 4.7, 1.8 Hz, 2H); C NMR (150 MHz, CDCl3): δ 130.98, 129.42, 129.09, 128.70, 127.93, 127.29, 126.84, 126.13, 126.06, 123.07, 123.04, 122.88, 121.72, 66.46, 64.82, 25.72; IR (neat): ν (cm⁻¹) 3077, 2979, 2956, 2843, 1723, 1436, 1183; HRMS (ESI): Calcd for C17H14O [M + Na]+ 257.0937, found 257.0947.

3,4-dihydro-1H-spiro[triphenylene-2,2'-[1,3]dioxolane] (3l): Following the general procedure; White solid (85% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 136-138 °C; H NMR (600 MHz, CDCl3): δ 8.70 (dt, J = 6.2, 3.4 Hz, 2H), 8.08 (dd, J = 6.1, 3.4 Hz, 1H), 8.00 – 7.94 (m, 1H), 7.62 (dt, J = 6.2, 3.4 Hz, 4H), 4.19 – 4.05 (m, 4H), 3.47 – 3.35 (m, 4H), 2.17 (t, J = 6.6 Hz, 2H); C NMR (150 MHz, CDCl3): δ 131.44, 131.25, 129.63, 129.45, 128.95, 127.88, 126.75, 126.65, 125.83, 125.78, 123.69, 123.13, 122.81, 122.75, 108.45, 64.66, 37.06, 31.15, 25.91; IR (neat): ν (cm⁻¹) 3070, 2953, 2885, 1598, 1494, 1369, 1118; HRMS (ESI): Calcd for C20H18O2 [M + H]+ 327.1356, found 327.1365.
291.1380, found 291.1389.

5',5'-dimethyl-3,4-dihydro-1H-spiro[triphenylene-2,2'-[1,3]dioxane] (3m): Following the general procedure; White solid (86% yield, eluent = petroleum ether/EtOAc (20:1)); Mp = 208-209 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.69 (dq, J = 7.2, 3.5 Hz, 2H), 8.09 – 7.99 (m, 2H), 7.62 (qd, J = 7.0, 6.5, 4.2 Hz, 4H), 3.75 (d, J = 11.4 Hz, 2H), 3.60 (d, J = 11.4 Hz, 2H), 3.49 (s, 2H), 3.28 (t, J = 6.7 Hz, 2H), 2.39 (t, J = 6.6 Hz, 2H), 1.15 (s, 3H), 0.97 (s, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 131.50, 131.24, 129.63, 129.44, 129.00, 127.14, 126.67, 126.60, 125.74, 125.72, 123.60, 123.15, 122.79, 122.75, 97.55, 70.52, 36.97, 30.32, 26.64, 24.90, 22.91, 22.51; IR (neat): ν (cm$^{-1}$) 3070, 2949, 2858, 1598, 1497, 1366, 1116; HRMS (ESI): Calcd for C$_{23}$H$_{24}$O$_2$ [M + H]$^+$ 333.1849, found 333.1858.

8-(1,2,3,4-tetrahydrotriphenylene-2-yl)-1,4-dioxaspiro[4.5]decane (3n): Following the general procedure; White solid (56% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 155-157 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.69 (dt, J = 7.3, 2.5 Hz, 2H), 8.12 – 8.03 (m, 2H), 7.64 – 7.58 (m, 4H), 3.99 (s, 4H), 3.31 (ddd, J = 30.5, 16.7, 4.6 Hz, 2H), 3.10 – 3.02 (m, 1H), 2.90 – 2.82 (m, 1H), 2.21 (ddd, J = 13.0, 6.1, 2.8 Hz, 1H), 1.99 – 1.91 (m, 2H), 1.87 (dt, J = 12.8, 2.7 Hz, 2H), 1.75 (d, J = 13.2 Hz, 1H), 1.63 (tt, J = 13.1, 3.6 Hz, 2H), 1.57 – 1.42 (m, 4H); 13C NMR (150 MHz, CDCl$_3$): δ 131.91, 131.68, 130.16, 129.98, 129.31, 129.21, 126.55, 126.52, 125.52, 125.50, 123.43, 123.29, 122.74, 122.70, 109.12, 64.29, 41.34, 38.63, 34.89, 30.93, 27.43, 27.31, 27.26, 26.36; IR (neat): ν (cm$^{-1}$) 3070, 2950, 2862, 1573, 1495, 1360, 1120; HRMS (ESI): Calcd for C$_{26}$H$_{28}$O$_2$ [M + H + MeOH]$^+$ 405.2424, found 405.092.

ethyl 10-phenylphenanthrene-9-carboxylate (3s): Following the general procedure; White solid (95% yield, eluent = petroleum ether/EtOAc (100:1–50:1)); Mp = 126-128 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.79 – 8.74 (m, 2H), 7.94 (dd, J = 8.1, 1.3 Hz, 1H), 7.75 – 7.61 (m, 4H), 7.57 – 7.40 (m,
ethyl 10-(p-tolyl)phenanthrene-9-carboxylate (3t): Following the general procedure; White solid (93% yield, eluent = petroleum ether/EtOAc (100:1)); Mp = 155-156 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.76 (dd, $J = 8.3$, 3.4 Hz, 2H), 7.92 (dd, $J = 8.1$, 1.4 Hz, 1H), 7.73 – 7.62 (m, 4H), 7.51 (ddd, $J = 8.2$, 6.8, 1.1 Hz, 1H), 7.35 – 7.27 (m, 4H), 4.15 (q, $J = 7.1$ Hz, 2H), 2.47 (s, 3H), 1.02 (t, $J = 7.1$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 169.32, 137.44, 136.49, 134.99, 130.99, 130.68, 130.59, 130.17, 130.14 (q, $J_{C-F} = 32.5$ Hz), 130.06, 130.03, 127.72, 127.60, 127.56, 127.46, 127.10, 125.97, 125.05 (q, $J_{C-F} = 3.4$ Hz), 123.28, 122.85, 122.82, 61.30, 13.61; IR (neat): ν (cm$^{-1}$) 3070, 2975, 2899, 1719, 1495, 1407, 1321, 1221, 1158, 1117, 1104, 1066, 1020; HRMS (ESI): Calcd for C$_{24}$H$_{20}$O$_2$ [M + H]$^+$ 341.1536, found 341.1545.

ethyl 10-(4-(trifluoromethyl)phenyl)phenanthrene-9-carboxylate (3u): Following the general procedure; White solid (86% yield, eluent = petroleum ether/EtOAc (100:1)); Mp = 190-192 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.78 (d, $J = 8.3$ Hz, 2H), 7.95 (d, $J = 8.1$ Hz, 1H), 7.78 (d, $J = 7.9$ Hz, 2H), 7.76 – 7.70 (m, 2H), 7.68 (t, $J = 7.5$ Hz, 1H), 7.59 (d, $J = 7.9$ Hz, 2H), 7.56 – 7.51 (m, 2H), 4.14 (q, $J = 7.1$ Hz, 2H), 0.98 (t, $J = 7.1$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 168.79, 142.07, 134.87, 130.84, 130.81, 130.63, 130.17, 130.14 (q, $J_{C-F} = 32.5$ Hz), 130.06, 130.03, 127.72, 127.60, 127.56, 127.46, 127.10, 125.97, 125.05 (q, $J_{C-F} = 3.4$ Hz), 123.28, 122.85, 122.82, 61.30, 13.61; IR (neat): ν (cm$^{-1}$) 3074, 2984, 2902, 1719, 1495, 1407, 1321, 1221, 1158, 1117, 1104, 1066, 1020; HRMS (ESI): Calcd for C$_{24}$H$_{17}$F$_3$O$_2$ [M + H]$^+$ 395.1253, found 395.0314.

ethyl 10-(benzo[d][1,3]dioxol-5-yl)phenanthrene-9-carboxylate (3v): Following the general
procedure; White solid (45% yield, eluent = petroleum ether/EtOAc (100:1~50:1)); Mp = 163-164 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.75 (dd, J = 8.4, 2.8 Hz, 2H), 7.91 (dd, J = 8.0, 1.2 Hz, 1H), 7.75 – 7.62 (m, 4H), 7.54 (t, J = 7.6 Hz, 1H), 6.99 – 6.86 (m, 3H), 6.06 (dd, J = 12.3, 1.4 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 1.12 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 169.22, 147.33, 147.24, 135.83, 131.55, 130.98, 130.91, 130.59, 129.86, 127.78, 127.75, 127.74, 127.39, 127.07, 126.86, 125.82, 123.82, 122.78, 122.63, 111.03, 108.10, 101.13, 61.15, 13.97; IR (neat): ν (cm$^{-1}$) 3072, 2990, 2899, 1716, 1487, 1450, 1233, 1218, 1175, 1053; HRMS (ESI): Calcd for C$_{24}$H$_{18}$O$_4$ [M + Na]$^+$ 393.1097, found 393.1105.

![Ethyl 10-(4-nitrophenyl)phenanthrene-9-carboxylate (3w)](image)

3w ethyl 10-(4-nitrophenyl)phenanthrene-9-carboxylate (3w): Following the general procedure; Pale yellow solid (70% yield, eluent = petroleum ether/EtOAc (100:1~50:1)); Mp = 210-212 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.78 (ddd, J = 8.4, 3.8, 1.0 Hz, 2H), 8.41 – 8.34 (m, 2H), 7.94 (dd, J = 8.2, 1.2 Hz, 1H), 7.75 (ddd, J = 14.0, 8.3, 6.9, 1.3 Hz, 2H), 7.69 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.54 (dd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.46 (dd, J = 8.2, 1.2 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 1.03 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 168.57, 147.59, 145.33, 133.98, 131.48, 130.85, 130.64, 130.16, 129.75, 127.91, 127.73, 127.41, 127.26, 127.16, 126.04, 123.32, 122.96, 122.91, 61.45, 13.84; IR (neat): ν (cm$^{-1}$) 3070, 2990, 1719, 1586, 1372, 1159, 1115, 1076; HRMS (ESI): Calcd for C$_{23}$H$_{17}$NO$_4$ [M + Na + MeOH]$^+$ 426.1312, found 426.0461.

![Ethyl 10-(naphthalen-2-yl)phenanthrene-9-carboxylate (3x)](image)

3x ethyl 10-(naphthalen-2-yl)phenanthrene-9-carboxylate (3x): Following the general procedure; White solid (77% yield, eluent = petroleum ether/EtOAc (100:1)); Mp = 175-177 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.80 (dd, J = 8.4, 5.0 Hz, 2H), 8.04 – 7.93 (m, 4H), 7.92 – 7.87 (m, 1H), 7.77 – 7.64 (m, 4H), 7.57 (ddd, J = 13.8, 11.2, 6.0, 1.6 Hz, 3H), 7.50 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 4.05 (p, J = 7.1 Hz, 2H), 0.83 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 169.20, 136.34, 135.70, 133.15, 132.79, 131.01, 130.91, 130.64, 129.98, 129.17, 128.48, 128.12, 128.02, 127.84, 127.77, 127.51, 127.47, 127.15, 126.92, 126.37, 126.33, 125.92, 122.86, 122.70, 61.12, 13.65; IR (neat): ν (cm$^{-1}$) 3060, 3001, 2953, 2893, 1724, 1494, 1446, 1212, 1195, 1155, 1100; HRMS (ESI): Calcd for C$_{27}$H$_{20}$O$_2$ [M + H]$^+$ 377.1536, found 377.1520.
ethyl 10-methylphenanthrene-9-carboxylate (3y): Following the general procedure; White solid (59% yield, eluent = petroleum ether/EtOAc (100:1)); \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.71 (dd, \(J = 18.2, 8.1\) Hz, 2H), 8.13 (dd, \(J = 8.1, 1.4\) Hz, 1H), 7.76 (dd, \(J = 8.1, 1.4\) Hz, 1H), 7.73 – 7.65 (m, 2H), 7.65 – 7.58 (m, 2H), 4.59 (q, \(J = 7.2\) Hz, 2H), 2.72 (s, 3H), 1.49 (t, \(J = 7.2\) Hz, 3H); \(^{13}\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 170.36, 130.96, 130.39, 130.37, 129.56, 129.40, 128.12, 127.24, 127.12, 127.00, 126.39, 125.17, 125.09, 122.94, 122.70, 61.48, 17.08, 14.38; HRMS (ESI): Calcd for C\(_{18}\)H\(_{16}\)O\(_2\) [M + Na\(^+\)] 287.1043, found 287.1054.

ethyl 10-ethylphenanthrene-9-carboxylate (3aa): Following the general procedure; Colorless oil (75% yield, eluent = petroleum ether/EtOAc (100:1)); \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.76 – 8.72 (m, 1H), 8.71 – 8.67 (m, 1H), 8.16 (dd, \(J = 8.1, 1.4\) Hz, 1H), 7.77 – 7.73 (m, 1H), 7.73 – 7.57 (m, 4H), 4.59 (q, \(J = 7.2\) Hz, 2H), 3.12 (q, \(J = 7.6\) Hz, 2H), 1.49 (t, \(J = 7.2\) Hz, 3H), 1.41 (t, \(J = 7.6\) Hz, 3H); \(^{13}\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 170.32, 135.39, 130.89, 129.84, 129.74, 129.42, 128.12, 127.12, 127.09, 126.99, 126.43, 125.25, 125.11, 123.21, 122.69, 61.43, 24.43, 15.22, 14.37; IR (neat): \(\nu\) (cm\(^{-1}\)) 3070, 2995, 1719, 1490, 1462, 1227, 1118; HRMS (ESI): Calcd for C\(_{19}\)H\(_{18}\)O\(_2\) [M + Na\(^+\)] 301.1199, found 301.1205.

ethyl 10-isopropylphenanthrene-9-carboxylate (3ab): Following the general procedure; Colorless oil (79% yield, eluent = petroleum ether/EtOAc (100:1)); \(^1\text{H NMR}\) (600 MHz, CDCl\(_3\)): \(\delta\) 8.76 (dd, \(J = 8.4, 1.3\) Hz, 1H), 8.68 (dd, \(J = 8.2, 1.3\) Hz, 1H), 8.39 (d, \(J = 8.3\) Hz, 1H), 7.76 – 7.56 (m, 5H), 4.57 (q, \(J = 7.2\) Hz, 2H), 3.54 (m, 1H), 1.76 – 1.59 (m, 6H), 1.48 (t, \(J = 7.1\) Hz, 3H); \(^{13}\text{C NMR}\) (150 MHz, CDCl\(_3\)): \(\delta\) 170.89, 138.40, 131.40, 129.44, 128.15, 127.15, 126.75, 126.54, 126.21, 125.30, 123.46, 122.59, 61.39, 22.21, 14.29; IR (neat): \(\nu\) (cm\(^{-1}\)) 3069, 2995, 1719, 1475, 1450, 1219, 1169, 1027; HRMS (ESI): Calcd for C\(_{20}\)H\(_{20}\)O\(_2\) [M + H\(^+\)] 293.1535, found 293.0731.
ethyl 10-phenethylphenanthrene-9-carboxylate (3ac): Following the general procedure, but using silylaryl triflate (0.80 mmol, 4.0 equiv) CsF (1.2 mmol, 8.0 equiv); White solid (74% yield, eluent = petroleum ether/EtOAc (100:1)); Mp = 151-153 °C; 1H NMR (600 MHz, CDCl$_3$): δ 8.79 – 8.76 (m, 1H), 8.72 (dd, $J = 8.2, 1.3$ Hz, 1H), 8.28 – 8.23 (m, 1H), 7.79 (dd, $J = 7.8, 1.5$ Hz, 1H), 7.76 – 7.70 (m, 2H), 7.65 (dddd, $J = 21.6, 6.9, 1.4$ Hz, 2H), 7.41 – 7.35 (m, 4H), 7.30 – 7.26 (m, 1H), 4.61 (q, $J = 7.1$ Hz, 2H), 3.42 – 3.37 (m, 2H), 3.13 – 3.08 (m, 2H), 1.50 (t, $J = 7.2$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 170.24, 141.85, 133.13, 130.93, 130.47, 129.82, 129.58, 128.62, 128.19, 128.13, 127.24, 127.22, 127.20, 126.64, 126.21, 125.37, 124.93, 123.32, 122.75, 61.60, 36.94, 33.44, 14.44; IR (neat): ν (cm$^{-1}$) 2989, 2902, 1706, 1494, 1450, 1382, 1208, 1064; HRMS (ESI): Calcd for C$_{25}$H$_{22}$O$_2$ [M + Na]$^+$ 377.1512, found 377.1521.

ethyl 10-cyclopropylphenanthrene-9-carboxylate (3ad): Following the general procedure; White solid (78% yield, eluent = petroleum ether/EtOAc (100:1)); 1H NMR (600 MHz, CDCl$_3$): δ 8.74 – 8.65 (m, 3H), 7.89 (dd, $J = 8.0, 1.3$ Hz, 1H), 7.73 – 7.58 (m, 4H), 4.59 (q, $J = 7.2$ Hz, 2H), 2.35 (tt, $J = 8.5, 5.8$ Hz, 1H), 1.49 (t, $J = 7.2$ Hz, 3H), 1.20 – 1.15 (m, 2H), 0.83 (td, $J = 6.0, 4.3$ Hz, 2H); 13C NMR (150 MHz, CDCl$_3$): δ 170.02, 134.55, 131.85, 131.66, 130.55, 129.67, 128.06, 127.21, 127.11, 126.70, 126.42, 125.11, 124.93, 123.32, 122.75, 61.60, 36.94, 33.44, 14.44; IR (neat): ν (cm$^{-1}$) 3065, 2975, 1716, 1497, 1376, 1211, 1113; HRMS (ESI): Calcd for C$_{20}$H$_{18}$O$_2$ [M + Na]$^+$ 313.1199, found 313.1211.

ethyl 10-cyclobutylphenanthrene-9-carboxylate (3ae): Following the general procedure; White solid (80% yield, eluent = petroleum ether/EtOAc (100:1)); 1H NMR (600 MHz, CDCl$_3$): δ 8.71 (dd, $J = 8.3, 1.3$ Hz, 1H), 8.67 (dd, $J = 8.2, 1.3$ Hz, 1H), 8.16 (dd, $J = 8.4, 1.2$ Hz, 1H), 7.82 (dt, $J = 8.2, 1.2$ Hz, 1H), 7.71 – 7.57 (m, 4H), 4.52 (q, $J = 7.2$ Hz, 2H), 4.32 (tt, $J = 10.5, 7.7$ Hz, 1H), 2.59 (qq, $J = 7.2, 2.3$ Hz, 2H), 2.45 (qd, $J = 11.0, 8.6$ Hz, 2H), 2.10 (qt, $J = 10.4, 8.1$ Hz, 1H), 1.92 – 1.84 (m, 1H), 1.47 (t, $J = 7.2$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 170.77, 137.15, 130.74, 130.21,
ethyl 10-cyclohexylphenanthrene-9-carboxylate (3af): Following the general procedure; White solid (83% yield, eluent = petroleum ether/EtOAc (100:1)); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 8.75 (dd, \(J = 8.1, 1.5\) Hz, 1H), 8.67 (d, \(J = 8.1\) Hz, 1H), 8.57 (d, \(J = 8.3\) Hz, 1H), 7.76 – 7.56 (m, 5H), 4.58 (q, \(J = 7.2\) Hz, 2H), 3.61 (s, 1H), 3.16 – 2.91 (m, 1H), 2.40 (d, \(J = 13.4\) Hz, 1H), 2.00 (q, \(J = 18.7, 11.8\) Hz, 4H), 1.86 (d, \(J = 9.5\) Hz, 2H), 1.50 (t, \(J = 7.2\) Hz, 3H), 1.48 – 1.40 (m, 2H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 170.86, 137.54, 131.47, 130.75, 129.91, 129.47, 128.05, 127.50, 127.13, 126.65, 126.52, 125.85, 125.46, 123.39, 122.57, 61.33, 46.49, 31.49, 27.55, 26.17, 14.48; IR (neat): \(\nu\) (cm\(^{-1}\)) 3066, 2987, 1716, 1492, 1367, 1116; HRMS (ESI): Calcd for C\(_{23}\)H\(_{24}\)O\(_2\) [M + H]\(^+\) 333.1849, found 333.1754.

ethyl 10-(tetrahydrofuran-2-yl)phenanthrene-9-carboxylate (3ag): Following the general procedure; White solid (64% yield, eluent = petroleum ether/EtOAc (50:1~10:1)); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 8.73 (dd, \(J = 8.4, 1.2\) Hz, 1H), 8.69 – 8.66 (m, 1H), 8.01 (dd, \(J = 8.4, 1.2\) Hz, 1H), 7.79 (dd, \(J = 7.9, 1.5\) Hz, 1H), 7.70 – 7.59 (m, 4H), 5.77 (t, \(J = 7.3\) Hz, 1H), 4.53 (qt, \(J = 9.7, 4.8\) Hz, 2H), 4.15 – 4.09 (m, 1H), 3.98 (dt, \(J = 8.2, 6.8\) Hz, 1H), 2.64 (dtt, \(J = 14.1, 7.0, 3.4\) Hz, 1H), 2.18 – 2.11 (m, 1H), 2.06 (ddq, \(J = 14.8, 9.3, 7.2\) Hz, 2H), 1.47 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 170.57, 133.99, 130.60, 129.72, 128.78, 128.52, 127.64, 127.25, 126.98, 126.86, 126.77, 125.35, 124.76, 123.16, 122.58, 78.39, 69.13, 60.86, 34.46, 26.14, 14.35; IR (neat): \(\nu\) (cm\(^{-1}\)) 3065, 2987, 1716, 1492, 1367, 1116; HRMS (ESI): Calcd for C\(_{23}\)H\(_{20}\)O\(_3\) [M + Na]\(^+\) 343.1849, found 343.1754.

2,2-dimethyl-1-(10-methylphenanthren-9-yl)propan-1-one (3ah): Following the general procedure; White solid (64% yield, eluent = petroleum ether/EtOAc (50:1~10:1)); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 8.72 (dd, \(J = 8.4, 1.2\) Hz, 1H), 8.69 – 8.66 (m, 1H), 8.01 (dd, \(J = 8.4, 1.2\) Hz, 1H), 7.79 (dd, \(J = 7.9, 1.5\) Hz, 1H), 7.70 – 7.59 (m, 4H), 5.77 (t, \(J = 7.3\) Hz, 1H), 4.53 (qt, \(J = 9.7, 4.8\) Hz, 2H), 4.15 – 4.09 (m, 1H), 3.98 (dt, \(J = 8.2, 6.8\) Hz, 1H), 2.64 (dtt, \(J = 14.1, 7.0, 3.4\) Hz, 1H), 2.18 – 2.11 (m, 1H), 2.06 (ddq, \(J = 14.8, 9.3, 7.2\) Hz, 2H), 1.47 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 170.57, 133.99, 130.60, 129.72, 128.78, 128.52, 127.64, 127.25, 126.98, 126.86, 126.77, 125.35, 124.76, 123.16, 122.58, 78.39, 69.13, 60.86, 34.46, 26.14, 14.35; IR (neat): \(\nu\) (cm\(^{-1}\)) 3065, 2987, 1716, 1492, 1367, 1116; HRMS (ESI): Calcd for C\(_{23}\)H\(_{20}\)O\(_3\) [M + Na]\(^+\) 343.1849, found 343.1754.
procedure; White solid (86% yield, eluent = petroleum ether/EtOAc (100:1)); \textbf{\textit{1H NMR}} (600 MHz, CDCl$_3$): \(\delta\) 8.73 – 8.67 (m, 2H), 8.13 (dd, \(J = 7.9, 1.6\) Hz, 1H), 7.86 – 7.82 (m, 1H), 7.71 – 7.57 (m, 5H), 2.74 (s, 3H), 1.74 (s, 9H); \textbf{HRMS} (ESI): Calcd for [M + Na]$^+$ 315.1356, found 315.1366.

\begin{center}
\includegraphics[width=0.2\textwidth]{3ai}
\end{center}

\textbf{3ai}

\textbf{phenyl(10-phenylphenanthren-9-yl)methanone (3ai):} Following the general procedure; White solid (96% yield, eluent = petroleum ether/EtOAc (100:1)); Mp = 158-160 °C; \textbf{\textit{1H NMR}} (600 MHz, CDCl$_3$): \(\delta\) 8.83 (d, \(J = 8.4\) Hz, 2H), 7.77 – 7.67 (m, 3H), 7.64 (d, \(J = 7.9\) Hz, 3H), 7.54 (t, \(J = 7.6\) Hz, 2H), 7.43 (t, \(J = 7.5\) Hz, 3H), 7.25 (d, \(J = 8.0\) Hz, 3H), 7.19 – 7.00 (m, 2H); \textbf{\textit{13C NMR}} (150 MHz, CDCl$_3$): \(\delta\) 199.37, 138.09, 137.12, 135.74, 135.68, 133.17, 131.61, 131.00, 130.60, 130.26, 129.86, 129.47, 128.91, 127.60, 127.53, 127.32, 127.30, 127.04, 126.94, 126.47, 122.87, 122.67; \textbf{IR} (neat): \(\nu\) (cm$^{-1}$) 2988, 2903, 1662, 1448, 1225, 1077; \textbf{HRMS} (ESI): Calcd for C$_{27}$H$_{18}$O [M + Na]$^+$ 381.1250, found 381.1251.

\begin{center}
\includegraphics[width=0.2\textwidth]{3aj}
\end{center}

\textbf{3aj}

\textbf{10-phenylphenanthrene-9-carbonitrile (3aj):} Following the general procedure; White solid (97% yield, eluent = petroleum ether/EtOAc (100:1)); \textbf{\textit{1H NMR}} (600 MHz, CDCl$_3$): \(\delta\) 8.76 (td, \(J = 7.3, 1.3\) Hz, 2H), 8.43 – 8.38 (m, 1H), 7.83 – 7.76 (m, 3H), 7.71 (dd, \(J = 8.3, 1.3\) Hz, 1H), 7.63 – 7.55 (m, 4H), 7.54 – 7.48 (m, 2H); \textbf{\textit{13C NMR}} (150 MHz, CDCl$_3$): \(\delta\) 147.39, 137.02, 131.75, 130.16, 129.91, 129.61, 129.44, 128.93, 128.82, 128.72, 128.66, 128.32, 128.07, 127.41, 126.46, 122.90, 122.88, 117.27, 109.59; \textbf{IR} (neat): \(\nu\) (cm$^{-1}$) 2988, 2901, 2224, 1487, 1442, 1373, 1074; \textbf{HRMS} (ESI): Calcd for C$_{21}$H$_{13}$N [M + H]$^+$ 280.1121, found 280.0330.

\begin{center}
\includegraphics[width=0.2\textwidth]{3ao}
\end{center}

\textbf{3ao}

\textbf{6,7,10,11-tetramethoxy-1,2,3,4-tetrahydrotriphenylene (3ao):} Following the general procedure; White solid (60% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 239-241 °C; \textbf{\textit{1H NMR}} (600 MHz,
MHz, CDCl₃): δ 7.83 (s, 2H), 7.36 (s, 2H), 4.12 (s, 6H), 4.05 (s, 6H), 3.10 (p, J = 3.1 Hz, 4H), 2.00 (p, J = 3.3 Hz, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 148.50, 148.19, 127.93, 126.25, 123.25, 103.97, 103.23, 56.02, 55.80, 27.05, 23.04; IR (neat): v (cm⁻¹) 3072, 2993, 2889, 2820, 1489, 1425, 1125; HRMS (ESI): Calcd for C₂₂H₂₄O₄ [M + H]⁺ 353.1747, found 353.1736.

3ap
ethyl 2,3,6,7-tetramethoxy-10-phenylphenanthrene-9-carboxylate (3ap): Following the general procedure; White solid (70% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 180-181 ºC; ¹H NMR (600 MHz, CDCl₃): δ 7.83 (d, J = 7.3 Hz, 2H), 7.49 – 7.45 (m, 2H), 7.45 – 7.40 (m, 3H), 7.31 (s, 1H), 6.96 (s, 1H), 4.13 (s, 3H), 4.12 (s, 3H), 4.06 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 3.73 (s, 3H), 0.93 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.74, 149.82, 149.46, 149.30, 148.68, 138.91, 134.51, 130.21, 128.09, 127.77, 127.62, 125.20, 125.03, 124.23, 122.36, 107.79, 105.75, 102.85, 102.59, 61.00, 56.05, 56.02, 55.86, 55.57, 13.66; IR (neat): v (cm⁻¹) 2990, 2973, 2902, 1718, 1618, 1511, 1470, 1423, 1265, 1208, 1117, 1051; HRMS (ESI): Calcd for C₂₇H₂₆O₆ [M + H]⁺ 447.1802, found 447.1811.

3aq
ethyl 6-phenylphenanthro[2,3-d:6,7-d']bis(1,3)dioxole-5-carboxylate (3aq): Following the general procedure; White solid (79% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 191-193 ºC; ¹H NMR (600 MHz, CDCl₃): δ 7.83 (d, J = 4.0 Hz, 2H), 7.48 – 7.40 (m, 3H), 7.40 – 7.35 (m, 2H), 7.24 (s, 1H), 6.91 (s, 1H), 6.10 (s, 2H), 6.05 (s, 2H), 4.05 (q, J = 7.1 Hz, 2H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.53, 148.50, 148.20, 147.77, 147.27, 138.62, 134.56, 130.27, 128.75, 128.10, 127.66, 127.11, 126.55, 126.17, 123.50, 104.97, 103.09, 101.49, 101.45, 100.52, 100.35, 61.10, 13.65; IR (neat): v (cm⁻¹) 2990, 2901, 1713, 1454, 1232, 1191, 1074, 1040; HRMS (ESI): Calcd for C₂₅H₁₈O₆ [M + H]⁺ 415.1176, found 415.1188.
ethyl 7-phenylpentaphene-6-carboxylate (3ar): Following the general procedure; Pale yellow oil (27% yield, eluent = petroleum ether/EtOAc (100:1)); 1H NMR (600 MHz, CDCl$_3$): δ 9.33 (d, $J = 4.5$ Hz, 2H), 8.32 (s, 1H), 8.17 (dd, $J = 8.2$, 5.3 Hz, 2H), 8.07 – 7.99 (m, 2H), 7.85 (d, $J = 8.2$ Hz, 1H), 7.65 – 7.48 (m, 9H), 4.17 (q, $J = 7.1$ Hz, 2H), 1.00 (t, $J = 7.1$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 169.16, 138.08, 136.89, 132.41, 132.30, 132.17, 132.03, 130.94, 130.29, 129.80, 128.88, 128.36, 128.28, 128.26, 128.20, 128.13, 128.08, 127.97, 127.68, 126.67, 126.51, 126.45, 126.27, 126.11, 124.88, 122.14, 121.96, 61.20, 13.73; IR (neat): ν (cm$^{-1}$) 2990, 2897, 1709, 1437, 1225, 1159, 1062; HRMS (ESI): Calcd for C$_{31}$H$_{22}$O$_2$ [M + H]$^+$ 427.1693, found 427.1700.

3as+3at

6,10-dimethyl-1,2,3,4-tetrahydrotriphenylene 7,10-dimethyl-1,2,3,4-tetrahydrotriphenylene (3as+3at): Following the general procedure; Colorless oil (73% yield, eluent = petroleum ether); 1H NMR (600 MHz, CDCl$_3$): δ 8.58 (dd, $J = 8.4$, 1.9 Hz, 1H), 8.55 (dd, $J = 8.4$, 1.4 Hz, 1H), 8.49 (s, 1H), 8.45 (s, 1H), 7.94 (d, $J = 8.4$ Hz, 2H), 7.84 (s, 2H), 7.43 (ddt, $J = 9.7$, 7.8, 3.1 Hz, 4H), 3.14 (dd, $J = 9.2$, 2.6 Hz, 8H), 2.62 (dd, $J = 5.8$, 2.4 Hz, 6H), 2.59 (d, $J = 2.4$ Hz, 6H), 2.03 – 1.97 (m, 8H); 13C NMR (150 MHz, CDCl$_3$): δ 135.95, 135.62, 134.87, 134.72, 134.72, 132.16, 131.63, 130.16, 129.99, 129.96, 129.46, 129.32, 129.13, 129.05, 128.93, 128.03, 127.73, 127.08, 127.05, 126.91, 126.81, 123.19, 123.09, 123.07, 122.62, 122.51, 122.45, 122.34, 26.92, 26.88, 26.81, 26.77, 23.01, 22.98, 21.93, 21.91, 21.87, 21.86; HRMS (ESI): Calcd for C$_{20}$H$_{20}$ [M + H]$^+$ 261.1638, found 261.1645.

Gram-scale Reaction for Preparation of 3a

OTf + OTf + TMS
1a, 8 mmol 2a, 24 mmol

5 mol% Pd$_2$(dba)$_3$, 20 mol% P(o-toly)$_3$
6.0 equiv CsF, 1.0 equiv LiOPiv
MeCN (50 mL), 60 °C, 12 h

3a
1.623 g, 78%
A 250 mL of Schlenk bottle equipped with a stirrer bar was charged with Pd$_2$(dba)$_3$ (368 mg, 5 mol %), tri-o-tolyphosphane (480 mg, 20 mol %), CsF (7.3g, 48.0 mmol, 6.0 equiv), and LiOPiv (864 mg, 8.0 mmol, 1.0 equiv) in the glove box. Then, the Schlenk bottle was removed from glove box and quickly evacuated and refilled with Ar for three times, followed by the addition of MeCN (50 mL), enol triflates 1a (2.06g, 8.0 mmol, 1.0 equiv), and silylaryl triflate 2a (5.52 mL, 24.0 mmol, 3.0 equiv). The Schlenk bottle was sealed with a Teflon screwcap under Ar flow and the reaction mixture was stirred at 60 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 20 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (50 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product 3a (1.623g, yield= 78%).

Gram-scale Reaction for Preparation of 3s

A 250 mL of Schlenk bottle equipped with a stirrer bar was charged with Pd$_2$(dba)$_3$ (230 mg, 5 mol %), tri-o-tolyphosphane (300 mg, 20 mol %), CsF (4.56g, 30.0 mmol, 6.0 equiv), and LiOPiv (540 mg, 5.0 mmol, 1.0 equiv) in the glove box. Then, the Schlenk bottle was removed from glove box and quickly evacuated and refilled with Ar for three times, followed by the addition of MeCN (30 mL), enol triflates 1s (1.62g, 5.0 mmol, 1.0 equiv), and silylaryl triflate 2a (3.45 mL, 15.0 mmol, 3.0 equiv). The Schlenk bottle was sealed with a Teflon screwcap under Ar flow and the reaction mixture was stirred at 60 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 20 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (50 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product 3s (1.427g, yield= 87%).

Friedel-Crafts cyclisation

Step 1. The ethyl 10-phenylphenanthrene-9-carboxylate (3s) (326.4 mg, 1.0 mmol) was added to a mixture of concentrated aqueous HBr (5mL) and glacial AcOH (20 mL) and then refluxed for 10 h. Upon cooling to room temperature, the reaction mixture was diluted with 20 mL of ethyl acetate, washed with water (50 mL), dried (MgSO$_4$) and concentrated. The residue was purified by chromatography to afford the desired product 10-phenylphenanthrene-9-carboxylic acid (233 mg, 78%) as a white solid.
10-phenylphenanthrene-9-carboxylic acid (5): White solid (78% yield, eluent = DCM/MeOH (20:1)); \(^1\)H NMR (600 MHz, d-DMSO): \(\delta\) 13.27 (s, 1H), 8.94 (t, \(J = 7.6\) Hz, 2H), 7.87 (d, \(J = 7.9\) Hz, 1H), 7.75 (dt, \(J = 7.6, 2H\)), 7.57 (t, \(J = 7.6\) Hz, 1H), 7.48 (ddd, \(J = 32.1, 16.1, 7.9\) Hz, 4H), 7.38 (d, \(J = 7.3\) Hz, 2H); \(^{13}\)C NMR (150 MHz, d-DMSO): \(\delta\) 170.18, 137.84, 134.56, 132.41, 130.71, 130.11, 129.72, 128.65, 128.34, 128.19, 128.01, 127.90, 127.78, 127.50, 127.34, 126.18, 123.74, 123.63.

Step 2. A 10 wt% solution of PPA acid in methanesulfonic acid (15 mL) was heated to 90 °C and then 10-phenylphenanthrene-9-carboxylic acid was added over the course of 10 min. Once the addition was completed the suspension was heated at 120 °C for 4 hours until a dark solution was observed, which was then cooled to room temperature and poured into ice water. After that, NaOH (cold sat. aqueous solution) were sequentially added to the mixture. The aqueous layer was extracted with ethyl acetate (3×20 mL), the combined organic layers were dried over MgSO\(_4\), filtrated and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel to afford the desired product 13H-indeno[1,2-l]phenanthren-13-one (203 mg, 93%) as an orange solid.

13H-indeno[1,2-l]phenanthren-13-one (6): Orange solid (78% yield, eluent = petroleum ether/EtOAc (15:1)); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 9.19 – 9.14 (m, 1H), 8.61 (d, \(J = 8.3\) Hz, 1H), 8.51 (d, \(J = 8.2\) Hz, 2H), 7.92 (d, \(J = 7.4\) Hz, 1H), 7.74 – 7.68 (m, 1H), 7.67 – 7.56 (m, 4H), 7.44 (td, \(J = 7.6, 1.2\) Hz, 1H), 7.28 (t, \(J = 7.3\) Hz, 1H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 195.77, 144.52, 143.73, 134.53, 134.21, 133.86, 130.90, 129.10, 128.76, 128.29, 127.52, 127.48, 127.28, 127.11, 125.93, 125.60, 125.21, 123.77, 123.39, 123.25, 122.56; IR (neat): \(\nu\) (cm\(^{-1}\)) 2988, 2899, 1699, 1602, 1504, 1195, 1064.

References
1H, 13C and 19F NMR Spectra

1H NMR Spectrum of 1h

13C NMR Spectrum of 1h
1H NMR Spectrum of In

13C NMR Spectrum of In
1H NMR Spectrum of 1t

13C NMR Spectrum of 1t
\(^1H \) NMR Spectrum of 1u

\(^{13}C \) NMR Spectrum of 1u
1H NMR Spectrum of 1w

13C NMR Spectrum of 1w
13C NMR Spectrum of 1x

1H NMR Spectrum of 1x
$\textbf{1H NMR Spectrum of 1ad}$

$\textbf{13C NMR Spectrum of 1ad}$
1H NMR Spectrum of 1ae

13C NMR Spectrum of 1ae
1H NMR Spectrum of 1af

![1H NMR Spectrum of 1af](image)

13C NMR Spectrum of 1af

![13C NMR Spectrum of 1af](image)
1H NMR Spectrum of 1ag

13C NMR Spectrum of 1ag
1H NMR Spectrum of 1ai

13C NMR Spectrum of 1ai
^{1}H NMR Spectrum of 1aj

^{13}C NMR Spectrum of 1aj
1H NMR Spectrum of 3b

13C NMR Spectrum of 3b
1H NMR Spectrum of 3c

13C NMR Spectrum of 3c
1H NMR Spectrum of 3d

13C NMR Spectrum of 3d
1H NMR Spectrum of 3e

13C NMR Spectrum of 3e
1H NMR Spectrum of 3f

13C NMR Spectrum of 3f
1H NMR Spectrum of 3g

- Chemical shifts and peaks are visible in the spectrum.

13C NMR Spectrum of 3g

- Chemical shifts and peaks are visible in the spectrum.
1H NMR Spectrum of 3h

13C NMR Spectrum of 3h
1H NMR Spectrum of 3i

13C NMR Spectrum of 3i
^{1}H NMR Spectrum of 3j

^{13}C NMR Spectrum of 3j
\textbf{\(^1\text{H NMR Spectrum of 3k} \)}

\textbf{\(^{13}\text{C NMR Spectrum of 3k} \)}
1H NMR Spectrum of 3l

13C NMR Spectrum of 3l
1H NMR Spectrum of 3m

13C NMR Spectrum of 3m
1H NMR Spectrum of 3n

13C NMR Spectrum of 3n
^{1}H NMR Spectrum of 3s

^{13}C NMR Spectrum of 3s
1H NMR Spectrum of 3u

13C NMR Spectrum of 3u
19F NMR Spectrum of 3u
1H NMR Spectrum of 3v

13C NMR Spectrum of 3v
1H NMR Spectrum of 3w

13C NMR Spectrum of 3w
1H NMR Spectrum of 3x

13C NMR Spectrum of 3x
1H NMR Spectrum of 3y

13C NMR Spectrum of 3y
1H NMR Spectrum of 3aa

13C NMR Spectrum of 3aa
^{1}H NMR Spectrum of 3ab

^{13}C NMR Spectrum of 3ab
1H NMR Spectrum of 3ac

13C NMR Spectrum of 3ac
1H NMR Spectrum of 3ae

13C NMR Spectrum of 3ae
^{1}H NMR Spectrum of 3af

^{13}C NMR Spectrum of 3af
1H NMR Spectrum of 3ag

13C NMR Spectrum of 3ag
1H NMR Spectrum of 3ah
1H NMR Spectrum of 3ai

13C NMR Spectrum of 3ai
1H NMR Spectrum of 3aj

13C NMR Spectrum of 3aj
1H NMR Spectrum of 3ao

13C NMR Spectrum of 3ao

S72
1H NMR Spectrum of 3ap

13C NMR Spectrum of 3ap
1H NMR Spectrum of 3aq

13C NMR Spectrum of 3aq
1H NMR Spectrum of 3ar

13C NMR Spectrum of 3ar
$^1\text{H NMR Spectrum of 3as+3at}$

$^{13}\text{C NMR Spectrum of 3as+3at}$
1H NMR Spectrum of 5

13C NMR Spectrum of 5
1H NMR Spectrum of 6

13C NMR Spectrum of 6