Supporting Information

Pd-catalyzed carbonylation of aryl C─H bonds in benzamides with CO₂

Lei Song, a Guang-Mei Cao, a Wen-Jun Zhou, a Jian-Heng Ye, a Zhen Zhang, a Xing-Yang Tian, a Jing Li, a and Da-Gang Yu a,b

a Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064 (P. R. China), Email: dgyu@scu.edu.cn
b State Key Laboratory of Elementa-Organic Chemistry, Nankai University, Tianjin 300071 (P. R. China)
Table of Contents

- General considerations S3
- Additional reaction optimization S4
- General synthetic methods for substrate S5
- Experimental procedures and characterization data S6
- Mechanistic studies S11
- References S16
- 1H NMR, 19F NMR and 13C NMR Spectra S17
General Considerations

All reactions were set up using standard Schlenk techniques and carried out under a carbon dioxide (CO₂) atmosphere with dry solvents. Palladium (II) Trifluoroacetate (Pd(TFA)_2) was purchased from sinocompound and stored in glovebox. Anhydrous N,N-Dimethylformamide (DMF) was purchased from HWRK Chem Co., Ltd. Lithium tert-butoxide (LiO⁻Bu) was purchased from ASTATECH. Cesium carbonate (Cs₂CO₃) was purchased from Accela ChemBio. Commercially available chemicals were purchase from Admas-beta, Aldrich, Alfa, and Aesar. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.2±0.03 mm using UV light as a visualizing agent and iodine in silica gel as developing agents.

¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Brüker Advance 400 spectrometer (¹H: 400 MHz, ¹⁹F: 376 MHz, ¹³C: 101 MHz). Chemical shifts (δ) for ¹H and ¹³C NMR spectra are given in ppm relative to TMS, The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts converted to the TMS scale (CDCl₃: δH = 7.26 ppm, δC = 77.16 ppm, DMSO-d₆: δH = 2.50 ppm, δC = 39.52 ppm, CD₂Cl₂: δH = 5.32 ppm, δC = 53.44 ppm). GC data were achieved by Agilent Technologies 7890B. GC-MS was obtained using electron ionization (Agilent Technologies 7890B/GC-System and 5977A/MSD). Exact ESI mass spectra were recorded on a SHIMADZU LCMS-IT-TOF. ESI-MS were obtained on a Thermo-ITQ. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm.
Additional reaction optimization

Table S1. Screening of Pd-catalysta

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd-catalyst (10 mol%)</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(TFA)$_2$</td>
<td>77 (74)</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>Pd(PP$_3$)$_4$</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>Pd(db$_2$)$_2$</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>PdCl$_2$</td>
<td>66</td>
</tr>
</tbody>
</table>

a As shown. b GC yield using n-dodecane as internal standard and the isolated yield was given in parentheses.

Table S2. Screening ortho-substituted benzamidesa

<table>
<thead>
<tr>
<th>R</th>
<th>1, 0.2 mmol</th>
<th>CO$_2$ (1 atm, closed)</th>
<th>Pd(TFA)$_2$ (10 mol%), LiO$^+$Bu (4 equiv)</th>
<th>Cs$_2$CO$_3$ (1.5 equiv), DMF, 140 °C, 18 h</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a as shown. Detected by GCMS.
General synthetic methods for substrate.

Method A: To the solution of benzoyl chloride derivatives (10 mmol, 1 equiv) and Et₃N (3.5 mL, 2.5 equiv) in DCM (10 mL), an aqueous solution of methylamine (40% w/w solution, 3 mL) was added dropwise at 0 °C, then, the reaction mixture was raised to 30 °C. After 1 h, the reaction mixture quenched by 1N HCl (20 mL), and extracted by EA (20 mL) two times. The organic phase was washed with 1N HCl (20 mL), 1N NaOH (20 mL), and brine (20 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo, the residue was purified by silica gel flash column chromatography to afford the desired product.

Method B: To the solution of benzoic acid derivatives (10 mmol, 1 equiv) and 1,1'-carbonyldiimidazole (1.62 g, 1 equiv) in DCM (20 mL), the reaction mixture was stirred until gas evolution was complete (20 min), an aqueous solution of methylamine (40% w/w solution, 2 mL) was added. After 1 h, the reaction mixture quenched by 1N HCl (20 mL), and extracted by EA (20 mL) two times. The organic phase was washed with 1N HCl (20 mL), 1N NaOH (20 mL), and brine (20 mL), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo, the residue was purified by silica gel flash column chromatography to afford the desired product.
Experimental procedures and characterization data

1. General procedures

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added \(\text{R} \) (0.2 mmol, 1 equiv) before moved into the glovebox. Then, \(\text{Cs}_2\text{CO}_3 \) (97.7 mg, 0.3 mmol, 1.5 equiv), \(\text{LiO}^\text{tBu} \) (64.1 mg, 0.8 mmol, 4 equiv), \(\text{Pd(TFA)}_2 \) (6.6 mg, 0.02 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO\(_2\) (shaking the tube in CO\(_2\) atmosphere) for 3 times, anhydrous DMF (3 mL) was added under CO\(_2\) and the Schlenk tube was sealed at atmospheric pressure of CO\(_2\) (1 atm). The resulting mixture was stirred for 18 h at 140 °C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford products.

2. Gram scale synthesis

To an oven-dried Schlenk tube (500 mL) equipped with a magnetic stir bar was added 1j (1.440 g, 6.82 mmol, 1 equiv) before moved into the glovebox. Then, \(\text{Cs}_2\text{CO}_3 \) (3.331 g, 10.2 mmol, 1.5 equiv), \(\text{LiO}^\text{tBu} \) (2.183 g, 27.3 mmol, 4 equiv), \(\text{Pd(TFA)}_2 \) (226.6 mg, 0.68 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO\(_2\) (shaking the tube in CO\(_2\) atmosphere) for 3 times, anhydrous DMF (102 mL) was added under CO\(_2\) and the Schlenk tube was sealed at atmospheric pressure of CO\(_2\) (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford white solid 2j with 78% yields.

2-methylisoindoline-1,3-dione (2a)

23.7 mg, 74% yield, white solid;
\(R_f \) (PE/EA 10:1): 0.33;
\(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 7.87 - 7.82 (m, 2H), 7.73 - 7.69 (m, 2H), 3.19 (s, 3H);
\(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta \) 168.46, 133.85, 132.17, 123.14, 23.92; \text{GCMS}: 161.0.\(^2\)
2-ethylisoindoline-1,3-dione (2b)

11.9 mg, 34% yield, white solid;
R_f (PE/EA 10:1): 0.44;
1H NMR (400 MHz, CDCl$_3$) δ 7.87 - 7.82 (m, 2H), 7.73 - 7.69 (m, 2H), 3.75 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 168.28, 133.85, 132.25, 123.14, 32.92, 13.98; GCMS: 175.0.3

isoindoline-1,3-dione (2d)

6.2 mg, 21% yield, white solid;
R_f (PE/EA 5:1): 0.27;
1H NMR (400 MHz, DMSO-d$_6$) δ 11.35 (s, 1H), 7.84 (s, 4H); 13C NMR (101 MHz, DMSO-d$_6$) δ 169.68, 134.76, 133.05, 123.38; GCMS: 147.0.3

2-phenylisoindoline-1,3-dione (2e)

9.3 mg, 21% yield, white solid;
R_f (PE/EA 10:1): 0.30;
1H NMR (400 MHz, CDCl$_3$) δ 7.99 - 7.94 (m, 2H), 7.82 - 7.77 (m, 2H), 7.57 - 7.48 (m, 2H), 7.47 - 7.36 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 167.29, 134.41, 131.78, 131.68, 129.13, 128.12, 126.59, 123.77; GCMS: 223.1.

5-methoxy-2-methylisoindoline-1,3-dione (2g), (2r)

25.8 mg, 67% yield, white solid (2g);
23.0 mg, 60% yield, white solid (2r);
R_f (PE/EA 10:1): 0.22;
1H NMR (400 MHz, CDCl$_3$) δ 7.74 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 7.14 (dd, J = 8.3, 2.3 Hz, 1H), 3.93 (s, 3H), 3.16 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 168.32, 168.28, 164.56, 134.81, 124.85, 124.10, 119.49, 108.06, 56.06, 23.94; GCMS: 191.0.3

2-methyl-5-phenoxyisoindoline-1,3-dione (2h), (2s)

42.3 mg, 84% yield, white solid (2h);
39.9 mg, 79% yield, white solid (2s);
R_f (PE/EA 10:1): 0.36;
1H NMR (400 MHz, CDCl$_3$) δ 7.77 (d, J = 8.2 Hz, 1H), 7.46 - 7.39 (m, 2H), 7.32 (d, J = 2.2 Hz, 1H), 7.28 - 7.22 (m, 2H), 7.13 - 7.05 (m, 2H), 3.15 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 167.98, 167.89, 163.35, 154.88, 134.72, 130.37, 125.67, 125.35, 125.08, 122.26, 120.42, 111.73, 24.02; GCMS: 253.1.

5-(tert-butyl)-2-methylisoindoline-1,3-dione (2i)

29.0 mg, 67% yield, white solid;
R_f (PE/EA 10:1): 0.50;
1H NMR (400 MHz, CDCl$_3$) δ 7.88 (dd, J = 1.7, 0.7 Hz, 1H), 7.76 (dd, J = 7.9, 0.7 Hz, 1H), 7.72 (dd, J = 7.9, 1.7 Hz, 1H), 3.17 (s, 3H), 1.38 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 168.96, 168.55, 158.45, 132.43, 130.80, 129.53, 122.98, 120.40, 35.72, 31.15, 23.90; GCMS: 217.1.3
2-methyl-5-phenylisoindoline-1,3-dione (2j), (2t)

40.0 mg, 88% yield, white solid (2j);
35.5 mg, 75% yield, white solid (2t);

\[\text{R}_{f} (\text{PE/EA 10:1}): 0.36; \]

\[^{1}H \text{ NMR (400 MHz, CDCl}_3 \delta 8.05 (s, 1H), 7.93 – 7.87 (m, 2H), 7.67 – 7.60 (m, 2H), 7.54 – 7.40 (m, 3H), 3.20 (s, 3H);} \]

\[^{13}C \text{ NMR (101 MHz, CDCl}_3 \delta 168.44, 168.37, 147.32, 139.05, 133.09, 132.42, 130.64, 129.19, 128.84, 127.33, 123.64, 121.80, 24.05; GCMS: 237.1.} \]

2-methyl-5-(naphthalen-2-yl)isoindoline-1,3-dione (2k), (2u)

46.9 mg, 82% yield, white solid (2k);
43.1 mg, 75% yield, white solid (2u);

\[\text{R}_{f} (\text{PE/EA 10:1}): 0.31; \]

\[^{1}H \text{ NMR (400 MHz, CDCl}_3 \delta 8.12 (d, J = 1.6 Hz, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.98 (dd, J = 7.7, 1.6 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 7.90 – 7.83 (m, 3H), 7.70 (dd, J = 8.6, 1.9 Hz, 1H), 7.60 – 7.47 (m, 2H), 3.18 (s, 3H);} \]

\[^{13}C \text{ NMR (101 MHz, CDCl}_3 \delta 168.39, 168.30, 147.10, 136.19, 133.45, 133.18, 132.51, 130.57, 129.02, 128.44, 127.71, 126.87, 126.80, 126.67, 124.81, 123.63, 121.88, 24.02; GCMS: 287.1.} \]

2-methyl-5-(phenylethynyl)isoindoline-1,3-dione (2l)

20.7 mg, 40% yield, white solid;

\[\text{R}_{f} (\text{PE/EA 10:1}): 0.41; \]

\[^{1}H \text{ NMR (400 MHz, CDCl}_3 \delta 7.96 (s, 1H), 7.82 (s, 2H), 7.60 – 7.50 (m, 2H), 7.39 (d, J = 5.3 Hz, 3H), 3.19 (s, 3H);} \]

\[^{13}C \text{ NMR (101 MHz, CDCl}_3 \delta 167.88, 167.80, 136.73, 132.51, 131.85, 130.90, 129.50, 129.21, 128.54, 126.04, 123.17, 93.83, 87.78, 24.08; GCMS: 261.1.} \]

(E)-2-methyl-5-styrylisoindoline-1,3-dione (2m)

44.1 mg, 84% yield, pale yellow solid;

\[\text{R}_{f} (\text{PE/EA 10:1}): 0.27; \]

\[^{1}H \text{ NMR (400 MHz, CDCl}_3 \delta 7.88 (d, J = 1.5 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.64 (dd, J = 7.8, 1.5 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.27 – 7.15 (m, 2H), 7.06 (d, J = 16.4 Hz, 1H), 3.08 (s, 3H);} \]

\[^{13}C \text{ NMR (101 MHz, CDCl}_3 \delta 168.39, 168.20, 143.52, 136.14, 133.06, 132.76, 131.88, 130.39, 128.89, 128.76, 126.98, 126.59, 123.60, 120.28, 24.00; GCMS: 263.1.} \]

4-(2-methyl-1,3-dioxoisindolin-5-yl)benzonitrile (2n)

40.1 mg, 76% yield, white solid;

\[\text{R}_{f} (\text{PE/EA 5:1}): 0.30; \]

\[^{1}H \text{ NMR (400 MHz, CDCl}_3 \delta 8.09 – 8.04 (m, 1H), 7.99 – 7.89 (m, 2H), 7.81 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 3.22 (s, 3H);} \]

\[^{13}C \text{ NMR (101 MHz, CDCl}_3 \delta 167.95, 167.90, 145.11, 143.41,} \]
5-(4-chlorophenyl)-2-methylisoindoline-1,3-dione (2o)

38.7 mg, 71% yield, white solid;
Rf (PE/EA 10:1): 0.30;
1H NMR (400 MHz, CDCl₃) δ 8.03 – 7.96 (m, 1H), 7.91 – 7.82 (m, 2H), 7.60 – 7.53 (m, 2H), 7.50 – 7.42 (m, 2H), 3.20 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 168.22, 168.16, 145.98, 137.46, 135.16, 133.20, 132.22, 130.91, 129.40, 128.55, 123.73, 121.57, 24.06;
GCMS: 262.0.

5-benzoyl-2-methylisoindoline-1,3-dione (2p)

39.3 mg, 74% yield, white solid;
Rf (PE/EA 10:1): 0.19;
1H NMR (400 MHz, CDCl₃) δ 8.22 – 8.17 (m, 1H), 8.15 (dd, J = 7.6, 1.4 Hz, 1H), 8.01 – 7.94 (m, 1H), 7.85 – 7.75 (m, 2H), 7.69 – 7.63 (m, 1H), 7.53 (dd, J = 8.4, 7.1 Hz, 2H), 3.23 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 194.71, 167.52, 142.91, 136.31, 135.39, 134.78, 133.40, 132.24, 130.03, 128.72, 124.29, 123.29, 24.24;
GCMS: 265.1.

2-methyl-5-(trifluoromethyl)isoindoline-1,3-dione (2q)

21.1 mg, 46% yield, white solid;
Rf (PE/EA 10:1): 0.43;
1H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 1.3 Hz, 1H), 8.00 (t, J = 1.3 Hz, 2H), 3.23 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 167.06, 166.94, 136.01 (q, J = 33.4 Hz), 135.02, 131.11 (q, J = 3.7 Hz), 123.77, 123.03 (q, J = 273.2 Hz), 120.44 (q, J = 3.8 Hz), 24.31;
19F NMR (376 MHz, CDCl₃) δ -62.94;
GCMS: 229.0.

2-methyl-5-phenyl-6-(trifluoromethyl)isoindoline-1,3-dione (2v)

30.7 mg, 50% yield, white solid;
Rf (PE/EA 10:1): 0.44;
1H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.49 – 7.41 (m, 3H), 7.36 – 7.29 (m, 2H), 3.24 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 167.07, 167.03, 148.19 (q, J = 1.8 Hz), 137.91, 134.44, 133.71 (q, J = 31.1 Hz), 131.00, 128.75, 128.50 (q, J = 1.8 Hz), 128.17, 126.96, 123.07 (q, J = 275.0 Hz), 121.41 (q, J = 5.5 Hz), 24.34;
19F NMR (376 MHz, CDCl₃) δ -57.11;
GCMS: 305.1.

2,5-dimethyl-6-phenylisoindoline-1,3-dione (2w)

30.7 mg, 50% yield, white solid, Pd(TFA)₂ (20 mol%);
Rf (PE/EA 10:1): 0.39;
1H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.69 (s, 1H), 7.50 – 7.38 (m, 3H), 7.33 – 7.28 (m, 2H), 3.18 (s, 3H), 2.39 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 168.64, 168.55, 147.74, 142.55, 139.97, 131.03, 130.00, 128.76, 128.50;
5,6-dimethoxy-2-methylisoindoline-1,3-dione (2x)

![Molecule](image)

23.5 mg, 53% yield, white solid;
R_f (PE/EA 5:1) 0.26;

1H NMR (400 MHz, CD₂Cl₂) δ 7.20 (s, 2H), 3.87 (s, 6H), 3.00 (s, 3H);
13C NMR (101 MHz, CD₂Cl₂) δ 168.50, 153.86, 125.57, 105.19, 56.46, 23.60;
GCMS: 251.1.

2-methyl-1H-benzo[f]isoindole-1,3(2H)-dione (2y)

![Molecule](image)

33.8 mg, 80% yield, white solid;
R_f (PE/EA 10:1) 0.28;

1H NMR (400 MHz, CDCl₃) δ 8.29 (s, 2H), 8.03 (dd, J = 6.2, 3.3 Hz, 2H), 7.68 (dd, J = 6.2, 3.2 Hz, 2H), 3.24 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 168.15, 135.34, 130.28, 129.13, 127.88, 124.55, 24.23;
GCMS: 221.0.

2-methyl-1H-benzo[e]isoindole-1,3(2H)-dione (2z)

![Molecule](image)

28.7 mg, 68% yield, white solid;
R_f (PE/EA 3:1) 0.42;

1H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 9.5 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.65 – 7.60 (m, 1H), 3.20 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 169.71, 169.07, 136.49, 134.79, 131.41, 129.43, 128.66, 127.93, 124.90, 118.39, 23.84;
HRMS (ESI+): calculated for C₁₂H₉N₂O₂⁺ [M+H]⁺
found 213.0659, 213.0660.

7-methyl-6H-pyrrolo[3,4-g]quinoline-6,8(7H)-dione (2aa)

![Molecule](image)

24.0 mg, 57% yield, white solid;
R_f (PE/EA 3:1) 0.14;

1H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.55 (s, 1H), 8.44 – 8.31 (m, 2H), 7.61 (dd, J = 8.3, 4.2 Hz, 1H), 3.28 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 167.46, 167.45, 152.99, 150.53, 137.89, 131.38, 130.91, 128.44, 126.03, 124.43, 123.49, 24.43;
HRMS (ESI+): calculated for C₁₂H₉N₂O₂ [M+H]⁺
Mechanism Studies

(1) The carbonyl source experiment

1. CO instead of CO$_2$

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added 1a (27.0 mg, 0.2 mmol, 1 equiv) before moved into the glovebox. Cs$_2$CO$_3$ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO$^\text{tBu}$ (64.1 mg, 0.8 mmol, 4 equiv), Pd(TFA)$_2$ (6.6 mg, 0.02 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO (shaking the tube in CO atmosphere) for 3 times, anhydrous DMF (3 mL) was added under CO and the Schlenk tube was sealed at atmospheric pressure of CO (1 atm). The resulting mixture was stirred for 18 h at 140 $^\circ$C. Then, the mixture was cooled to room temperature, and the resulting mixture was analyzed by GCMS (No desired product be detected by GCMS).

2. 13CO$_2$ instead of CO$_2$

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added 1a (27.0 mg, 0.2 mmol, 1 equiv) before moved into the glovebox. Cs$_2$CO$_3$ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO$^\text{tBu}$ (64.1 mg, 0.8 mmol, 4 equiv), Pd(TFA)$_2$ (6.6 mg, 0.02 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with 13CO$_2$ (shaking the tube in 13CO$_2$ atmosphere) for 3 times, anhydrous DMF (3 mL) was added under CO and the Schlenk tube was sealed at atmospheric pressure of 13CO$_2$ (1 atm). The resulting mixture was stirred for 18 h at 140 $^\circ$C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford products 2a' (23.1 mg, 70%), and the resulting product was analyzed by MS and NMR.

2-methylisoindoline-1,3-dione-13C (2a')

23.1 mg, 74% yield, white solid;
R$_f$ (PE/EA 10:1): 0.33;
1H NMR (400 MHz, CDCl$_3$) δ 7.89 – 7.80 (m, 2H), 7.75 – 7.67 (m, 2H), 3.19 (d, J = 2.6 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 168.47, 133.86 (t, J = 2.3 Hz), 132.23 (dd, J = 33.6, 30.7 Hz), 123.16 (d, J = 3.2 Hz), 23.93; GCMS: 162.0.
(2) Kinetic isotope effect experiment

1. Intramolecular Competition Reaction

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added [D$_1$]-1a8 (54.5 mg, 0.4 mmol, 1 equiv, D>95%) before moved into the glovebox. Cs$_2$CO$_3$ (195.5 mg, 0.6 mmol, 1.5 equiv), LiO$^+$Bu (128.1 mg, 1.6 mmol, 4 equiv), Pd(TFA)$_2$ (13.3 mg, 0.04 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO$_2$ (shaking the tube in CO$_2$ atmosphere) for 3 times, anhydrous DMF (6 mL) was added under CO$_2$ and the Schlenk tube was sealed at atmospheric pressure of CO$_2$ (1 atm). The resulting mixture was stirred for 2 h at 140 °C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford white solid ([D$_1$]-2a + 2a, 11.1 mg, 17%). The ratio of which was determined to be 4.26:1 by 1H NMR.

The ratio of [D$_1$]-2a + 2a
2. Intramolecular Competition Reaction

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added [D₄]-1a° (28.0 mg, 0.2 mmol, 0.5 equiv) and 1a (27.0 mg, 0.2 mmol, 0.5 equiv) before moved into the glovebox. Cs₂CO₃ (195.5 mg, 0.6 mmol, 1.5 equiv), LiO'Bu (128.1 mg, 1.6 mmol, 4 equiv), Pd(TFA)₂ (13.3 mg, 0.04 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO₂ (shaking the tube in CO₂ atmosphere) for 3 times, anhydrous DMF (6 mL) was added under CO₂ and the Schlenk tube was sealed at atmospheric pressure of CO₂ (1 atm). The resulting mixture was stirred for 2 h at 140 °C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford white solid ([D₄]-2a + 2a, 11.7 mg, 18%). The ratio of which was determined to be 2.33:1 by ¹H NMR.

¹H NMR of the ([D₄]-2a + 2a)
(3) Intermediate capture reaction

1. Pd-catalysis (A) test

\[
\begin{align*}
\text{CO}_2 \quad & (1 \text{ atm, closed}) \quad \text{BuOLi} \quad (4 \text{ equiv}), \quad \text{Cs}_2\text{CO}_3 \quad (1.5 \text{ equiv}) \\
\text{DMF, 140 °C, 18 h} & \quad \rightarrow \\
\end{align*}
\]

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added A (71.2 mg, 0.2 mmol, 1 equiv) before moved into the glovebox. Cs$_2$CO$_3$ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO^tBu (64.1 mg, 0.8 mmol, 4 equiv) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO$_2$ (shaking the tube in CO$_2$ atmosphere) for 3 times, anhydrous DMF (3 mL) was added under CO$_2$ and the Schlenk tube was sealed at atmospheric pressure of CO$_2$ (1 atm). The resulting mixture was stirred for 18 h at 140 °C. Then, the mixture was cooled to room temperature, the resulting was analyzed by GC (2a, 62%, GC yield using n-dodecane as internal standard)

\[
\begin{align*}
\text{CO}_2 \quad & (1 \text{ atm, closed}) \quad \text{A} \quad (10 \text{ mol\%}), \quad \text{LiO}^t\text{Bu} \quad (4 \text{ equiv}) \\
\text{DMF, 140 °C, 18 h} & \quad \rightarrow \\
\end{align*}
\]

Detected 2a by GCMS

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added 1m (47.5 mg, 0.2 mmol, 1 equiv) and A (7.1 mg, 0.02 mmol, 10 mol%) before moved into the glovebox. Cs$_2$CO$_3$ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO^tBu (64.1 mg, 0.8 mmol, 4 equiv) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO$_2$ (shaking the tube in CO$_2$ atmosphere) for 3 times, anhydrous DMF (3 mL) was added under CO$_2$ and the Schlenk tube was sealed at atmospheric pressure of CO$_2$ (1 atm). The resulting mixture was stirred for 18 h at 140 °C. Then, the mixture was cooled to room temperature, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford white solid 2m with 79% yield. 2a also could be detected by GCMS.

2. Control experiment of ligand

\[
\begin{align*}
\text{Pd(TFA)}_2 \quad & (10 \text{ mol\%}), \quad \text{LiO}^t\text{Bu} \quad (4 \text{ equiv}) \\
\text{DMF, 140 °C, 18 h} & \quad \rightarrow \\
\end{align*}
\]

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added 1a (27.0 mg, 0.2 mmol, 1 equiv) before moved into the glovebox. Cs$_2$CO$_3$ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO^tBu (64.1 mg, 0.8 mmol, 4 equiv), Pd(TFA)$_2$ (6.6 mg, 0.02 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO$_2$ (shaking the
tube in CO₂ atmosphere) for 3 times, anhydrous DMF (3 mL) and TEMDA (3 uL, 0.02 mmol, 10 mol%) was added under CO₂ and the Schlenk tube was sealed at atmospheric pressure of CO₂ (1 atm). The resulting mixture was stirred for 18 h at 140 °C. Then, the mixture was cooled to room temperature, the resulting was analyzed by GC with 74% yield.

3. Palladacycle (A) capture experiment

![Diagram of palladacycle (A) capture experiment]

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added 1a (27.0 mg, 0.2 mmol, 1 equiv) before moved into the glovebox. Cs₂CO₃ (97.7 mg, 0.3 mmol, 1.5 equiv), LiO'Bu (64.1 mg, 0.8 mmol, 4 equiv), and Pd(TFA)₂ (6.6 mg, 0.02 mmol, 10 mol%) was added to the tube before transferring out of the glovebox. The tube was then evacuated and back-filled with CO₂ (shaking the tube in CO₂ atmosphere) for 3 times, anhydrous DMF (3 mL) and TEMDA (3 uL, 0.02 mmol, 10 mol%) was added under CO₂ and the Schlenk tube was sealed at atmospheric pressure of CO₂ (1 atm). The resulting mixture was stirred for 2 h at 140 °C. Then, the mixture was cooled to room temperature, the resulting was analyzed by ESI-HRMS.

Pd-catalysis (A)

![1H NMR spectrum of palladacycle (A)]

1H NMR (400 MHz, CDCl₃) δ 7.46 (dd, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.06 – 6.94 (m, 2H), 3.00 (s, 3H), 2.89 (s, 6H), 2.69 (s, 8H), 2.56 (s, 2H); **13C NMR** (101 MHz, CDCl₃) δ 180.14, 146.11, 145.34, 129.16, 127.61, 126.91, 124.34, 63.67, 60.33, 51.05, 48.75, 34.76; **HRMS (ESI+):** calculated for C₁₄H₂₂N₃OPd⁺ [M+H]⁺ 356.0949, found 356.0943.⁹
Reference

- 1H NMR, 19F NMR and 13C NMR Spectra

2-methylisoindoline-1,3-dione (2a)
2-ethylisooindole-1,3-dione (2b)
isoindoline-1,3-dione (2d)
2-phenylisoindoline-1,3-dione (2e)
5-methoxy-2-methylisoindoline-1,3-dione (2g), (2r)
2-methyl-5-phenoxyisoindoline-1,3-dione (2h), (2s)
5-(tert-butyl)-2-methylisoindoline-1,3-dione (2i)
2-methyl-5-phenylisoindoline-1,3-dione (2j), (2t)
2-methyl-5-(naphthalen-2-yl)isoindoline-1,3-dione (2k), (2u)
2-methyl-5-(phenylethynyl)isoindoline-1,3-dione (2I)
(E)-2-methyl-5-styrylisodoline-1,3-dione (2m)
4-(2-methyl-1,3-dioxoisindolin-5-yl)benzonitrile (2n)
5-(4-chlorophenyl)-2-methylisoindoline-1,3-dione (2o)
5-benzoyl-2-methylisoindoline-1,3-dione (2p)
2-methyl-5-(trifluoromethyl)isoindoline-1,3-dione (2q)
2-methyl-5-phenyl-6-(trifluoromethyl)isoindoline-1,3-dione (2v)
2,5-dimethyl-6-phenylisoindoline-1,3-dione (2w)
5,6-dimethoxy-2-methylisoindoline-1,3-dione (2x)
2-methyl-1H-benzo[f]isoindole-1,3(2H)-dione (2y)
2-methyl-1H-benzo[e]isoindole-1,3(2H)-dione (2z)
7-methyl-6H-pyrrolo[3,4-g]quinoline-6,8(7H)-dione (2aa)
2-methyl-1H-benzo[4,5]thieno[2,3-f]isoindole-1,3(2H)-dione (2ab)
2-methylisouindoline-1,3-dione-¹³C (2a')
Palladacycle (A)