Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Hydroxy-Assisted Regio and Stereoselective Synthesis of Functionalized Alkenes via Phosphine-Catalyzed β' -Umpolung Addition of *o*-Hydroxy Aromatic Aldimines to Allenoates

Kunpeng Chen, Yishu Bao, Jiahua Wang, Zonghao Dai, Jinrong Lu* and Qingfa Zhou*

State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.

Fax: (+86)-025-8628-5179;

Phone: (+86)-025-8618-5160; E-mail: zhouqingfa@cpu.edu.cn

Table of Contents

1. General Information	2
2. Experimental Procedure	3
3. Characterization Data	5
4. Copies of ¹ H NMR, ¹³ C NMR spectra	16
5. Copy of NOESY Spectra	
6. Copy of HPLC Traces	40

1. General Information

All reactions were performed in dry solvents and anhydrous conditions. DCM, THF, DMSO and MeCN etc. were freshly distilled over CaH₂ prior to use. All other reagents were used as received from commercial sources. Reactions were monitored through thin layer chromatography (TLC) on 0.25-mm SiliCycle silica gel plates and visualized under UV light. NMR spectra of the new product were recorded using Bruker Avance-300 and Bruker Avance-500 instruments, calibrated to CD(H)Cl₃ as the internal reference (7.26 and 77.0 ppm for ¹H and ¹³C NMR spectra respectively), calibrated to DMSO-*d*₆ as the internal reference (2.50 and 39.5 ppm for ¹H and ¹³C NMR spectra respectively). ¹H NMR spectral data are reported in terms of chemical shift (δ , ppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR spectral data are reported in terms of chemical shift (δ , ppm) and multiplicity. The following abbreviations indicate the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Enantiomeric excesses (ee) were determined by HPLC analysis on Shimadzu HPLC with Daicel chiral column.

2. Experimental Procedure

2.1 Allenoate Preparation

All of the allenoate were prepared using reported methods.^a

2.2 Substituted Diethyl hydroxybenzylidene amino malonate Preparation

All of the diethyl hydroxybenzylidene amino malonate were prepared using methods.^b

2.3 General Procedure for Phosphine-Catalyzed β' -Umpolung Addition

To a mixture of diethyl hydroxybenzylidene amino malonate **1a** (0.1 mmol) and allene **2a** (0.12 mmol) in CH_2Cl_2 (1 mL), PPh₃ (0.02 mol, 5.3 mg) was added. The resulting solution was stirred at room temperature for 12h. After removal of solvent, the product was purified through silica gel to give the desired products **3a**.

Assignments of the geometries of the trisubstituted alkenes were made based on the chemical shift of the β -vinyl proton of the enoate, and further confirmed through NOESY-NMR spectroscopic analysis of **3a** for NOESY-NMR spectra.

(b) Z. Huang, Y. Bao, Y. Zhang, F. Yang, T. Lu and Q. Zhou, J. Org. Chem., 2017, 82, 12726-12734.

⁽a) R. Na, C. Jing, Q. Xu, H. Jiang, X. Wu, J. Shi, J. Zhong, M. Wang, D. Benitez, E. Tkatchouk, W. Goddard III, H. Guo and O. Kwon, *J. Am. Chem. Soc.*, 2011, **133**, 13337-13348.

2.4 Derivatization of Compound 3a

2.4.1 Transformation to 4a

To a solution of **3a** (47.5 mg, 0.1 mmol) in CH₃OH (1 mL) was added 0.025 mL of 4 N HCl. Stirring was then continued at room temperature until the starting material had been consumed. The solvent was removed in vacuo, the mixture was quenched by water, and the aqueous layer was extracted with CH₂Cl₂. The organic layers were combined, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography (petroleum ether: ethyl acetate = 3:1), affording **4a** (29.1 mg) in 78% yield as a colorless oil.

2.4.2 Further transformation to 4b

To a solution of **3a** (47.5 mg, 0.1 mmol) in CH₃OH (1 mL) was added 0.5 mL of 4 N HCl. Stirring was then continued at reflux until the starting material had been consumed. The solvent was removed in vacuo, the mixture was quenched by water, and the aqueous layer was extracted with CH_2Cl_2 . The organic layers were combined, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The crude product was purified by flash chromatography (petroleum ether: ethyl acetate = 2:1), affording **4b** (28.1 mg) in 86% yield as a yellowish oil.

3. Characterization Data

Tetraethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3a)

3a, 82%

Prepared according to the general procedure. Compound 3a was purified by silica gel chromatography (petroleum ether: ethyl acetate = 5:1) to afford a yellow oil in 82% yield (39.1 mg).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 13.01 (s, 1H), 8.59 (s, 1H), 7.34 (d, *J* = 7.29 Hz, 2H), 6.99 (d, *J* = 8.48 Hz, 1H), 6.90 (t, *J* = 7.50 Hz, 1H), 6.30 (q, *J* = 7.09 Hz, 1H), 4.79 (s, 1H), 4.37–4.09 (m, 8H), 2.01 (d, *J* = 7.36 Hz, 3H), 1.32–1.22 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 170.4, 169.7, 167.2, 167.1, 166.7, 161.2, 143.3, 133.0, 132.6, 126.4, 119.0, 118.6, 117.2, 76.5, 62.6, 62.5, 61.2, 60.8, 52.3, 16.2, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((2-hydroxy-5-methylbenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3b)

3b, 58%

Prepared according to the general procedure. Compound **3b** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 7:1) to afford a yellow oil in 90% yield (28.5 mg).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 12.75 (s, 1H), 8.54 (s, 1H), 7.16 (d, *J* = 9.13 Hz, 2H), 6.90 (d, *J* = 8.17 Hz, 1H), 6.30 (q, *J* = 7.20 Hz, 1H), 4.78 (s, 1H), 4.31–4.10 (m, 8H), 2.30 (s, 3H), 2.01 (d, *J* = 7.27 Hz, 3H), 1.29–1.21 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 170.4, 169.7, 167.2, 167.1, 166,7, 159.0, 143.4, 134.1, 132.7, 127.6, 126.3, 118.6, 117.0, 76.5, 62.6, 62.5, 61.2, 60.8, 52.3, 20.2, 16.3, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((5-chloro-2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3c)

3c, 60%

Prepared according to the general procedure. Compound 3c was purified by silica gel chromatography (petroleum ether: ethyl acetate = 7:1) to afford a yellow oil in 60% yield (30.7 mg).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 12.98 (s, 1H), 8.57 (s, 1H), 7.35 (d, J = 2.59 Hz, 1H), 7.32–7.30 (m, 1H), 6.94 (d, J = 8.84 Hz, 1H), 6.29 (q, J = 7.26 Hz, 1H), 4.80 (s, 1H), 4.33–4.13 (m, 8H), 2.02 (d, J = 7.22 Hz, 3H), 1.34–1.26 (m, 12H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 170.4, 168.7, 166.9 (2C), 166.6, 159.7, 143.4, 132.8, 131.7, 126.3, 123.2, 119.8, 118.8, 76.5, 62.7(2C), 61.2, 60.9, 52.3, 16.3, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((5-bromo-2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3d)

3d, 56%

Prepared according to the general procedure. Compound **3d** was purified by silica gel chromatography (petroleum ether : ethyl acetate = 7:1) to afford a yellow oil in 56% yield (31.1 mg).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 13.05 (s, 1H), 8.54 (s, 1H), 7.51–7.38 (m, 2H), 6.88 (d, *J* = 8.79 Hz, 1H), 6.28 (q, *J* = 7.22 Hz, 1H), 4.77 (s, 1H), 4.31–4.09 (m, 8H), 2.01 (d, *J* = 7.27 Hz, 3H), 1.32–1.23 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 170.4, 168.6, 166.9, 166.8, 166.6, 160.2, 143.4, 135.6, 134.7, 126.3, 120.4, 119.3, 110.0, 76.5, 62.7, 62.7, 61.3, 60.9, 52.3, 16.3, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((3-ethoxy-2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3e)

3e, 90%

Prepared according to the general procedure. Compound 3e was purified by silica gel chromatography (petroleum ether: ethyl acetate = 4:1) to afford a yellow oil in 90% yield (46.9 mg).

¹H NMR (300 MHz, Chloroform-*d*) δ 13.22 (s, 1H), 8.57 (s, 1H), 7.01–6.95 (m, 2H), 6.82 (t,

J = 7.85 Hz, 1H), 6.32 (q, *J* = 7.21 Hz, 1H), 4.84 (s, 1H), 4.25–4.11 (m, 10H), 2.00 (d, *J* = 7.24 Hz, 3H), 1.48 (t, *J* = 7.01 Hz, 3H), 1.29–1.24 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 170.4, 169.9, 167.3, 167.1, 166.8, 151.8, 147.6, 143.5, 126.2, 124.6, 119.2, 118.0, 117.0, 76.4, 64.8, 62.6, 62.5, 61.2, 60.8, 52.0, 16.3, 14.9, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3f)

Prepared according to the general procedure. Compound **3f** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 8:1) to afford a yellow oil in 82% yield (28.5 mg).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 13.34 (s, 1H), 8.56 (s, 1H), 7.42 (d, *J* = 2.40 Hz, 1H), 7.16 (d, *J* = 2.40 Hz, 1H), 6.33 (q, *J* = 7.19 Hz, 1H), 4.80 (s, 1H), 4.34–4.11 (m, 8H), 2.04 (d, *J* = 7.36 Hz, 3H), 1.45 (s, 9H), 1.32 (s, 9H), 1.30–1.22 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 170.6, 170.5, 167.4 (2C), 166.7, 158.3, 143.9, 140.0, 136.8, 127.8, 127.3, 126.2, 118.0, 76.5, 62.5, 62.4, 61.1, 60.8, 52.2, 35.1, 34.1, 31.5 (3C), 29.4 (3C), 16.3, 14.0 (2C), 13.9 (2C).

Tetraethyl-(3*E*)-1-((1-(2-hydroxyphenyl)ethylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3g)

3g, 62%

Prepared according to the general procedure. Compound 3g was purified by silica gel chromatography (petroleum ether: ethyl acetate = 4:1) to afford a yellow oil in 82% yield (30.4 mg).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 14.38 (s, 1H), 7.58 (dd, *J* = 8.03, 1.63 Hz, 1H), 7.36–7.30 (m, 1H), 6.99 (dd, *J* = 8.32, 1.28 Hz, 1H), 6.83 (td, *J* = 8.25, 1.29 Hz, 1H), 6.47 (q, *J* = 7.24 Hz, 1H), 4.92 (s, 1H), 4.32–4.13 (m, 8H), 2.28 (s, 3H), 2.04 (d, *J* = 7.19 Hz, 3H), 1.34–1.26 (m, 12H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 175.6, 170.8, 168.3, 167.6, 167.1, 161.6, 144.0, 132.7, 128.6, 125.8, 120.9, 118.3, 117.6, 74.1, 62.7 (2C), 61.4, 61.0, 52.4, 21.0, 16.6, 14.1 (2C), 13.9, 13.8.

Tetraethyl-(*Z*)-1-(((*E*)-(2-hydroxynaphthalen-1-yl)methylene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3h)

3h, 63%

Prepared according to the general procedure. Compound **3h** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 3:1) to afford a yellow oil in 63% yield (33.2 mg).

¹**H** NMR (300 MHz, DMSO- d_6) δ 14.61 (d, J = 3.70 Hz, 1H), 9.30 (d, J = 3.73 Hz, 1H), 8.05 (d, J = 8.48 Hz, 1H), 7.94 (d, J = 9.22 Hz, 1H), 7.82 (d, J = 7.87 Hz, 1H), 7.58 (td, J = 6.90, 3.28 Hz, 1H), 7.37 (d, J = 7.48 Hz, 1H), 7.06–7.01 (m, 1H), 6.26 (q, J = 7.06 Hz, 1H), 4.72 (s, 1H), 4.32–4.06 (m, 8H), 1.92 (d, J = 7.15 Hz, 3H), 1.28–1.16 (m, 12H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 167.8, 165.8, 164.5, 164.2, 163.8, 161.0, 141.3, 134.3, 131.0, 127.1, 126.3, 124.7, 123.8, 121.4, 119.4, 116.8, 105.7, 72.9, 61.0, 60.7, 59.0, 58.6, 50.6, 13.9, 11.8, 11.7 (3C).

Triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,2,3-tricarboxylate (3i)

3i, 52%

Prepared according to the general procedure. Compound **3i** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 52% yield (21.1 mg).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 12.48 (s, 1H), 8.36 (s, 1H), 7.36 (td, *J* = 8.64, 1.74 Hz, 2H), 6.99 (d, *J* = 7.28 Hz, 1H), 6.90 (d, *J* = 7.49 Hz, 1H), 6.32 (q, *J* = 7.22 Hz, 1H), 4.59 (s, 1H), 4.56 (s, 1H), 4.22–4.17 (m, 6H), 2.03 (d, *J* = 7.21 Hz, 3H), 1.30–1.24 (m, 9H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 168.6, 168.2, 161.0, 144.4, 142.9, 133.0, 132.0 (2C), 118.7 (2C), 117.1, 117.0, 71.8, 61.6, 61.2, 60.5, 53.0, 16.0, 14.1 (2C), 14.0.

1,1,2-triethyl-3-methyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3j)

Prepared according to the general procedure. Compound 3j was purified by silica gel chromatography (petroleum ether: ethyl acetate = 5:1) to afford a yellow oil in 68% yield (31.5 mg).

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.71 (s, 1H), 8.55 (s, 1H), 7.59 (dd, *J* = 7.60, 1.71 Hz, 1H), 7.41 (td, *J* = 7.78, 1.68 Hz, 1H), 7.00–6.89 (m, 2H), 6.21 (q, *J* = 7.16 Hz, 1H), 4.62 (s, 1H), 4.30–4.07 (m, 6H), 3.60 (s, 3H), 1.91 (d, *J* = 7.20 Hz, 3H), 1.24–1.14 (m, 9H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.9, 169.7, 167.1, 166.9, 166.7, 160.6, 143.2, 133.8, 133.2, 126.3, 119.3, 119.2, 117.1, 76.7, 63.0, 62.8, 61.2, 52.3, 52.0, 16.4, 14.2, 14.1 (2C).

1,1,2-triethyl-3-propyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3k)

3k, 86%

Prepared according to the general procedure. Compound 3k was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 66% yield (32.4 mg).

¹**H NMR** (300 MHz, DMSO- d_6) δ 12.70 (s, 1H), 8.56 (s, 1H), 7.58 (dd, J = 7.69, 1.71 Hz, 1H), 7.41 (td, J = 7.75, 1.66 Hz, 1H), 6.94 (td, J = 7.89, 1.92 Hz, 2H), 6.22 (q, J = 7.12 Hz, 1H), 4.63 (s, 1H), 4.29–3.95 (m, 8H), 1.92 (d, J = 7.19 Hz, 3H), 1.54 (q, J = 7.06 Hz, 2H), 1.23–1.16 (m, 9H), 0.83 (t, J = 7.39 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 170.0, 169.7, 167.1, 166.9, 166.4, 160.6, 142.7, 133.8, 133.1, 126.6, 119.2 (2C), 117.1, 76.8, 66.5, 62.9, 62.8, 61.2, 52.4, 21.7, 16.3, 14.2, 14.1, 14.0, 10.7.

3-butyl-1,1,2-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3l)

3I, 44%

Prepared according to the general procedure. Compound **31** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 44% yield (22.2 mg).

¹**H** NMR (300 MHz, DMSO- d_6) δ 12.69 (s, 1H), 8.56 (s, 1H), 7.57 (dd, J = 7.63, 1.74 Hz,

1H), 7.41 (td, J = 7.76, 1.73 Hz, 1H), 6.98–6.88 (m, 2H), 6.22 (q, J = 7.16 Hz, 1H), 4.62 (s, 1H), 4.29–3.95 (m, 8H), 1.91 (d, J = 7.20 Hz, 3H), 1.56–1.43 (m, 2H), 1.28–1.14 (m, 11H), 0.84 (t, J = 7.33 Hz, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 169.9, 169.7, 167.1, 166.9, 166.4, 160.6, 142.8, 133.8, 133.1, 126.7, 119.2 (2C), 117.1, 76.8, 64.7, 62.9, 62.8, 61.2, 52.4, 30.3, 19.1, 16.3, 14.2, 14.1, 14.0, 13.9.

1,1,2-triethyl-3-isopropyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3m)

3m, 57%

Prepared according to the general procedure. Compound 3m was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 57% yield (28.0 mg).

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.72 (s, 1H), 8.56 (s, 1H), 7.58 (dd, *J* = 7.65, 1.72 Hz, 1H), 7.45–7.36 (m, 1H), 6.99–6.88 (m, 2H), 6.18 (q, *J* = 7.17 Hz, 1H), 4.86 (p, *J* = 6.24 Hz, 1H), 4.62 (s, 1H), 4.30–4.05 (m, 6H), 1.91 (d, *J* = 7.22 Hz, 3H), 1.24–1.12 (m, 15H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 170.0, 169.7, 167.2, 166.9, 166.0, 160.7, 142.1, 133.8, 133.1, 126.9, 119.2, 119.2, 117.1, 76.7, 68.8, 62.9, 62.8, 61.2, 52.2, 21.9, 21.8, 16.3, 14.2, 14.1 (2C).

3-(tert-butyl)-1,1,2-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3n)

Prepared according to the general procedure. Compound 3n was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 33% yield (16.7 mg).

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.84 (s, 1H), 8.54 (s, 1H), 7.57 (dd, *J* = 7.69, 1.67 Hz, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 6.98–6.88 (m, 2H), 6.14 (q, *J* = 7.16 Hz, 1H), 4.65 (s, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 7.40 (td, *J* = 7.16 Hz, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 7.40 (td, *J* = 7.16 Hz, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 7.40 (td, *J* = 7.16 Hz, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 7.40 (td, *J* = 7.16 Hz, 1H), 7.40 (td, *J* = 8.05, 1.68 Hz, 1H), 7.40 (td, *J* = 7.16 Hz, 1H), 7.40 (td, *J*

1H), 4.28–4.07 (m, 6H), 1.90 (d, *J* = 7.21 Hz, 3H), 1.39 (s, 9H), 1.24–1.14 (m, 9H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 170.2, 169.8, 167.3, 167.0, 165.8, 160.8, 141.7, 133.8, 133.2, 127.6, 119.3 (2C), 117.2, 81.6, 76.6, 62.9, 62.8, 61.2, 51.6, 28.2 (3C), 16.4, 14.3, 14.1 (2C).

3-benzyl-1,1,2-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (30)

30, 58%

Prepared according to the general procedure. Compound **30** was purified by silica gel chromatography (petroleum ether: ethyl acetate = 5:1) to afford a yellow oil in 58% yield (31.3 mg).

¹**H** NMR (300 MHz, DMSO- d_6) δ 12.72 (s, 1H), 8.56 (s, 1H), 7.59 (dd, J = 8.00, 1.74 Hz, 1H), 7.46–7.28 (m, 6H), 6.95 (t, J = 7.49 Hz, 2H), 6.25 (q, J = 7.20 Hz, 1H), 5.11 (d, J = 12.40 Hz, 1H), 5.03 (d, J = 12.40 Hz, 1H), 4.65 (s, 1H), 4.30–4.00 (m, 6H), 1.90 (d, J = 7.07 Hz, 3H), 1.23–1.10 (m, 9H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.9, 169.8, 167.1, 166.9, 166.2, 160.6, 143.3, 136.0, 133.9 (2C), 133.2, 128.8, 128.6, 128.5, 126.4, 119.3, 119.2, 117.1 (2C), 76.8, 66.7, 63.0, 62.8, 61.2, 52.4, 16.4, 14.2, 14.1, 14.0.

1,1,3-triethyl-2-propyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3p)

3p, 56%

Prepared according to the general procedure. Compound 3p was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 56% yield (27.5 mg).

¹**H NMR** (300 MHz, DMSO- d_6) δ 12.66 (s, 1H), 8.56 (s, 1H), 7.56 (dd, J = 7.53, 1.76 Hz, 1H), 7.40 (td, J = 7.34, 1.74 Hz, 1H), 6.97–6.89 (m, 2H), 6.21 (q, J = 7.18Hz, 1H), 4.64 (s, 1H), 4.29–4.15 (m, 4H), 4.08–3.94 (m, 4H), 1.91 (d, J = 7.20 Hz, 3H), 1.62–1.50 (m, 2H), 1.24–1.13 (m, 9H), 0.85 (t, J = 7.42 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 170.1, 169.7, 167.2, 167.0, 166.4, 160.7, 142.9, 133.9, 133.2, 126.7, 119.3, 119.2, 117.1, 76.8, 66.7, 63.0, 62.8, 61.0, 52.5, 21.8, 16.3, 14.2, 14.1 (2C), 10.6.

2-butyl-1,1,3-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3q)

3q, 60%

Prepared according to the general procedure. Compound 3q was purified by silica gel chromatography (petroleum ether: ethyl acetate = 5:1) to afford a yellow oil in 60% yield (30.3 mg).

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.69 (s, 1H), 8.56 (s, 1H), 7.57 (dd, *J* = 7.63, 1.74 Hz, 1H), 7.40 (td, *J* = 7.46, 1.73 Hz, 1H), 6.98–6.89 (m, 2H), 6.21 (q, *J* = 7.16 Hz, 1H), 4.62 (s, 1H), 4.28–4.14 (m, 4H), 4.08–3.97 (m, 4H), 1.90 (d, *J* = 7.19 Hz, 3H), 1.58–1.47 (m, 2H), 1.34–1.24 (m, 2H), 1.23–1.10 (m, 9H), 0.85 (t, *J* = 7.34 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 170.0, 169.7, 167.1, 166.9, 166.3, 160.6, 142.8, 133.8, 133.1, 126.6, 119.3, 119.2, 117.1, 76.7, 64.9, 62.9, 62.8, 60.9, 52.4, 30.3, 18.9, 16.3, 14.2, 14.1, 14.0, 13.8.

1,1,3-triethyl-2-isopropyl-(3*E*)-1-((2hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3r)

3r, 54%

Prepared according to the general procedure. Compound 3r was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 54% yield (26.5 mg).

¹**H** NMR (300 MHz, DMSO- d_6) δ 12.69 (s, 1H), 8.55 (s, 1H), 7.56 (dd, J = 7.55, 1.75 Hz, 1H), 7.40 (td, J = 7.36, 1.72 Hz, 1H), 6.97–6.90 (m, 2H), 6.19 (q, J = 7.19Hz, 1H), 4.91 (p, J = 6.23 Hz, 1H), 4.60 (s, 1H), 4.29–4.16 (m, 4H), 4.10–4.00 (m, 2H), 1.91 (d, J = 7.24 Hz, 3H), 1.25–1.18 (m, 9H), 1.17–1.12 (m, 6H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.7, 169.5, 167.2, 167.0, 166.4, 160.7, 142.6, 133.8, 133.2, 126.7, 119.3, 119.2, 117.1, 76.7, 68.8, 63.0, 62.8, 61.0, 52.5, 21.8, 21.6, 16.4, 14.3, 14.1 (2C).

2-(tert-butyl)-1,1,3-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3s)

Prepared according to the general procedure. Compound 3s was purified by silica gel chromatography (petroleum ether: ethyl acetate = 6:1) to afford a yellow oil in 80% yield (40.4 mg).

¹**H** NMR (300 MHz, DMSO- d_6) δ 12.76 (s, 1H), 8.53 (s, 1H), 7.57 (dd, J = 7.93, 1.59 Hz, 1H), 7.40 (td, J = 7.49, 1.71 Hz, 1H), 6.98–6.90 (m, 2H), 6.16 (q, J = 7.19 Hz, 1H), 4.56 (s, 1H), 4.31–4.14 (m, 4H), 4.06 (q, J = 7.10 Hz, 2H), 1.91 (d, J = 7.23 Hz, 3H), 1.37 (s, 9H), 1.25–1.14 (m, 9H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.8, 169.0, 167.3, 167.0, 166.6, 160.7, 142.0, 133.8, 133.2, 127.1, 119.3, 119.2, 117.1, 81.7, 76.6, 62.9, 62.8, 60.9, 52.9, 27.9 (3C), 16.4, 14.3, 14.2, 14.1.

2-benzyl-1,1,3-triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,2,3-tetracarboxylate (3t)

3t, 56%

Prepared according to the general procedure. Compound 3t was purified by silica gel chromatography (petroleum ether: ethyl acetate = 5:1) to afford a yellow oil in 56% yield (30.2 mg).

¹**H** NMR (500 MHz, DMSO- d_6) δ 12.69 (s, 1H), 8.56 (s, 1H), 7.54 (dd, J = 7.67, 1.74 Hz, 1H), 7.43–7.32 (m, 6H), 6.98–6.92 (m, 2H), 6.20 (q, J = 7.17 Hz, 1H), 5.17 (d, J = 12.45 Hz, 1H), 5.11 (d, J = 12.45 Hz, 1H), 4.71 (s, 1H), 4.23–4.14 (m, 4H), 4.06–3.99 (m, 2H), 1.90 (d, J = 7.22 Hz, 3H), 1.22–1.13 (m, 9H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.9, 169.7, 167.1, 167.0, 166.3, 160.7, 143.2, 136.1, 133.9 (2C), 133.1, 128.8, 128.6, 128.5, 126.4, 119.3 (2C), 117.1 (2C), 76.7, 66.7, 63.0, 62.9, 61.0, 52.4, 16.3, 14.2, 14.1 (2C).

Triethyl-(3*E*)-1-((2-hydroxybenzylidene)amino)pent-3-ene-1,1,3-tricarboxylate (3v)

Prepared according to the general procedure. Compound 3v was purified by silica gel

3v, 88%

chromatography (petroleum ether: ethyl acetate = 8:1) to afford a yellow oil in 88% yield (35.6 mg).

¹**H** NMR (500 MHz, DMSO- d_6) δ 12.70 (s, 1H), 8.49 (s, 1H), 7.58 (dd, J = 7.66, 2.15 Hz, 1H), 7.45–7.37 (m, 1H), 6.98–6.89 (m, 2H), 6.85 (q, J = 7.14 Hz, 1H), 4.30–4.20 (m, 4H), 3.91 (q, J = 7.04 Hz, 2H), 1.68 (d, J = 7.20 Hz, 3H), 1.25–1.22 (m, 6H), 1.10 (t, J = 7.12 Hz,

3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.4, 168.1, 167.4, 167.3, 167.1, 160.6, 141.3, 133.8, 132.9, 127.5, 119.3, 117.1, 75.0, 62.4 (2C), 60.7, 33.2, 16.0, 15.0, 14.2 (2C).

Tetraethyl (Z)-1-aminopent-3-ene-1,1,2,3-tetracarboxylate (4a)

Afford 29.1 mg in 78% yield as a colorless oil

¹H NMR (300 MHz, Chloroform-*d*) δ 6.35 (q, *J* = 7.19 Hz, 1H), 4.50 (s, 1H), 4.28–4.12 (m, 8H), 2.48 (s, 2H), 2.00 (d, *J* = 7.22 Hz, 3H), 1.30–1.22 (m, 12H).
¹³C NMR (75 MHz, Chloroform-*d*) δ 171.5, 170.9, 168.2, 166.9, 142.0, 127.6, 68.7, 62.3, 62.2, 61.2, 60.5, 53.6, 16.0, 14.0(2C), 13.9(2C).

Triethyl (Z)-4-ethylidene-5-oxopyrrolidine-2,2,3-tricarboxylate (4b)

Afford 28.1 mg in 86% yield as a yellowish oil.

¹**H NMR** (300 MHz, Chloroform-*d*) δ 6.57 (s, 1H), 6.32 (q, J = 7.19 Hz, 1H), 4.47 (s, 1H), 4.31–4.20 (m, 4H), 4.15 (q, J = 7.09 Hz, 2H), 2.21 (dd, J = 7.37, 1.59 Hz, 3H), 1.30–1.23 (m, 9H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 169.1, 167.4, 167.2, 166.7, 137.7, 126.8, 67.2, 63.1, 62.6, 61.7, 51.4, 13.9, 13.8, 13.8, 13.6.

4. Copies of ¹H NMR, ¹³C NMR spectra

3d, 56%

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

3m, 57%

5. Copy of NOESY Spectra

6. Copy of HPLC Traces

Retention of the chiral center was evidenced through HPLC analysis against the racemic and enantiopure compound **3** using a Daicel chiral column (eluent: 1 mL/min 5% isopropanol in hexane).

HPLC chromatogram of racemic **3a**

PDA Ch1 254nm

	Retention Time	Area	Area %	Height	Height %
	11.846	546343	49.622	28933	49.210
	12.965	554673	50.378	29862	50.790
Total		1101016	100.000	58796	100.000

HPLC chromatogram of enantiopure 3a

	Retention Time	Area	Area %	Height	Height %
	11.669	162213	7.169	8550	7.114
	12.733	2100504	92.831	111628	92.886
Total		2262717	100.000	120178	100.000

HPLC chromatogram of racemic 3p

PDA Ch1 254nm

	Retention Time	Area	Area %	Height	Height %
	12.916	883.081	49.989	34.895	50.025
	14.923	883.473	50.011	34.860	49.975
Total		1766.554	100.000	69.755	100.000

HPLC chromatogram of enantiopure 3p

	Retention Time	Area	Area %	Height	Height %
	12.910	29.177	4.423	1.116	4.322
	14.904	630.433	95.577	24.706	95.678
Total		659.610	100.000	25.822	100.000

HPLC chromatogram of racemic 3q

PDA Ch1 254nm

	Retention Time	Area	Area %	Height	Height %
	12.384	1249.479	50.042	46.420	44.444
	14.244	1247.379	49.958	58.025	55.556
Total		2496.858	100.000	104.445	100.000

HPLC chromatogram of enantiopure 3q

	Retention Time	Area	Area %	Height	Height %
	12.469	61.465	4.242	2.726	4.180
	14.299	1387.650	95.758	62.486	95.820
Total		1449.115	100.000	65.212	100.000

HPLC chromatogram of racemic 3r

PDA Ch1 254nm

	Retention Time	Area	Area %	Height	Height %
	11.494	1316.459	49.782	55.928	50.273
	14.306	1328.013	50.218	55.320	49.727
Total		2644.472	100.000	111.248	100.000

HPLC chromatogram of enantiopure 3r

	Retention Time	Area	Area %	Height	Height %
	11.467	78.056	6.634	2.374	4.772
	14.282	1098.553	93.366	47.377	95.228
Total		1176.609	100.000	49.751	100.000

HPLC chromatogram of racemic **3s**

PDA Ch1 254nm

	Retention Time	Area	Area %	Height	Height %
	8.690	441.489	49.814	31.504	53.621
	10.501	444.794	50.186	27.249	46.379
Total		889.283	100.000	58.753	100.000

HPLC chromatogram of enantiopure 3s

	Retention Time	Area	Area %	Height	Height %
	8.709	21.804	3.800	1.168	4.378
	10.538	552.034	96.200	25.510	95.622
Total		573.838	100.000	26.678	100.000