For substrates with one substituent at the benzene ring of o-phenylene diamine (as described above), two possible isomers (3o vs 3o'; 3t vs 3t') might be produced. Luckily, the selectivity of reaction in our work is very good and only one isomer is obtained. Then one key issue came to our thoughts about how to determine the accurate structure of these compounds. We tried to determine the structures of compounds of 3o and 3t based on x-ray analysis. However, it did not work. Then we tried to do functionalization of 3o by adding a benzyl group at the N atom according to a reference (Angew. Chem. Int. Ed. 2017, 56, 587-590). In the reference, the compound structure is shown as below:

According the NMR analysis, there is no difference between the NMR spectra of the product with a benzyl group at 3o and the one from the supporting information of the above-mentioned reference (attached below). Therefore, we can draw a conclusion that we have obtained the isomer 3o with high regioselectivity.
The 1H NMR for the compound ($3aj$) in reference:

![NMR spectrum of compound 3aj](image1)

5-Benzy1-10-methylbenzo[4,5]imidazo[1,2-c]quinazolin-6(5H)-one ($3aj$). Yield = 79\%; Colorless solid; 1H NMR (500 MHz, CDCl$_3$) δ 8.56 (dd, J = 7.8, 1.6 Hz, 1H), 8.37 (d, J = 8.3 Hz, 1H), 7.70 (s, 1H), 7.54–7.48 (m, 1H), 7.39–7.25 (m, 8H), 5.58 (s, 2H), 2.56 (s, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 147.6, 145.0, 144.4, 137.5, 135.8, 135.7, 132.3, 129.4, 129.2, 127.9, 126.0, 125.8, 124.0, 119.5, 115.5, 115.1, 113.8, 47.2, 22.0; IR (neat, cm$^{-1}$): 2917, 1689, 1584, 1387, 1247, 1194, 748; ESI HRMS m/z (M+H)$^+$ calcd 340.1444, obsd 340.1445.

The 1H NMR for the compound (with a benzyl group at the N atom of 3o) that we measured:

![NMR spectrum of compound with benzyl group](image2)