Supporting information

Highly Selective C-H Bond Activation of *N*-Arylbenzimidamide and Divergent Couplings with Diazophosphonate Compounds: A Catalyst-controlled Selective Synthetic Strategy for 3-Phosphorylindoles and 4-Phosphorylisoquinolines

Qiaolan Yang,^{a,b} Chenglin Wu,^b Jianhui Zhou,^b Guoxue He,^b Hong Liu*^b and Yu Zhou*^b

^aNano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, People's Republic of China.

^bState Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Inst itute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 20120 3, People's Republic of China

E-mail: <u>hliu@simm.ac.cn</u> (H. Liu); <u>zhouyu@simm.ac.cn</u> (Y. Zhou)

Contents

I. General Information	3
II. Synthesis of Substrates	4
III. General Synthetic Procedures and Characterization Data	5
IV. Gram-scale Synthesis, Synthetic Utility and Mechanism Studies	20
V. X-ray Crystallographic Data	26
VI. NMR Spectra and HR-MS Spectra of Products	

I. General Information

The reagents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on HSGF 254 (0.15-0.2 mm thickness), visualized by irradiation with UV light (254 nm). Column chromatography was performed using silica gel FCP 300-400. Nuclear magnetic resonance spectra were recorded on a Brucker AMX-400MHz instrument (TMS as IS). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). Low and high resolution mass were measured by the ESI method with a Tsou-ESI mass spectrometer.

II. Synthesis of Substrates

Procedure for the preparation of compound 1: Starting materials were prepared according to literature procedures.^{1a,1b}

Method A:

A solution of AlMe₃ (2 M in toluene, 2.8 mmol) was added dropwise to a mixture of aromatic amine (1.1 mmol) and primary carboxamide (1 mmol) in anhydrous toluene (3 mL) at 0 °C in a flame-dried two-necked flask, under an argon atmosphere. The resulting mixture was stirred for 30 min at room temperature and heated to 110 °C (oil bath temperature) for 4-18 hours. The mixture was cooled to 0 °C and diluted with CH₂Cl₂ (20 vol) and then slowly poured into ice-cold saturated NH₄Cl solution (4 mL). THF (15 vol) was added and the mixture was stirred for 30 min at room temperature then filtered through a Celite bed, dried with MgSO₄, and concentrated to give the crude product. The crude product was then recrystallized with EtOAc/PE (1:5) to give pure solid product.

Method B:

To a screw-cap reaction tube was added benzamidine hydrochloride (1 mmol), Aryl iodide (1 mmol), CuI (0.1 mmol), and Cs₂CO₃ (2 mmol). The reaction tube was placed under high vacuum, backfilled with argon and repeated several times. Dimethylformamide (2 mL) was added using a syringe and the mixture was heated to 90 °C under oil bath. After the resulting solution was stirred for 24 hours, the product was extracted using ethyl acetate, washed with water times. The organic layer was dried over anhydrous Na₂SO₄ and filtered. Following concentration under reduced pressure, the residue was purified by silica gel chromatography (PE/EA = 1:4) to afford the desired product.

procedure for the preparation of compound 2^2

A mixture of crude diethyl (2-oxopropyl)phosphonate, toluenesulfonyl azide (4.93g, 25 mmol) and triethylamine (25 mL) was stirred at room temperature for 15 h. After evaporation of triethylamine under reduced pressure the residue was dissolved in diethylether. The precipitate was filtered off, the filtrate was evaporated and the residue was purified by flash chromatography on silica gel to give the desired product as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.18 – 4.09 (m, 4H), 2.23 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 6H).

III. General Synthetic Procedures and Characterization Data

(a) General procedure for the synthesis of products 3a and 4a

A pressure tube was charged with **1a** (0.2 mmol), **2** (0.3 mmol), $[RhCp*Cl_2]_2$ (8 mol%), AgNTf₂ (0.04 mmol), CsOAc (0.4 mmol), AcOH (0.4 mmol), DCE (2 mL). The reaction mixture was stirred at 100 °C for 14 h under an argon atmosphere. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA (2:1) to afford the desired product **3a**.

A pressure tube was charged with **1a** (0.2 mmol), **2** (0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (12 mol %), AgNTf₂ (0.04 mmol), CF₃COONa (0.4 mmol), MeOH (2 mL). The reaction mixture was stirred at 80 °C for 14h under an argon atmosphere. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA (2:1) to afford the desired product 4a.

(b) Characterization data of products

Diethyl (3-methyl-1-(phenylamino) isoquinolin-4-yl) phosphonate (3a)

Product **3a** was obtained as white solid (81% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 9.54 (s, 1H), 8.72 (d, J = 8.6 Hz, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.9 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 4.12 – 4.01 (m, 2H), 4.00 – 3.91 (m, 2H), 2.75 (d, J = 1.5 Hz, 3H), 1.20 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.7 (d, $J_{C-P} = 14.7$ Hz), 154.5 (d, $J_{C-P} = 2.0$ Hz), 140.7, 138.5 (d, $J_{C-P} = 12.8$ Hz), 131.1, 128.8, 126.4 (d, $J_{C-P} = 2.5$ Hz), 126.0, 123.8, 123.3, 122.0, 116.7 (d, $J_{C-P} = 10.2$ Hz), 105.2 (d, $J_{C-P} = 188.0$ Hz), 61.5, 61.4, 26.4, 16.7, 16.6; ³¹P NMR (162MHz, DMSO- d_6) δ 20.43; ESI-MS(m/z) calculated for C₂₀H₂₄N₂O₃P (M+H)⁺ 371.1519, found: 371.1517.

Diethyl (1-((4-methoxyphenyl)amino)-3-methylisoquinolin-4-yl)phos phonate (3b)

Product **3b** was obtained as white solid (77% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 9.46 (s, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.51 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 9.1 Hz, 2H), 7.71 (t, J = 7.3 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 9.1 Hz, 2H), 4.10 – 3.87 (m, 4H), 3.76 (s, 3H), 2.71 (d, J = 1.7 Hz, 3H), 1.20 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.9 (d, $J_{C-P} = 14.6$ Hz), 155.7, 154.7 (d, $J_{C-P} = 1.8$ Hz), 138.4 (d, $J_{C-P} = 12.9$ Hz), 133.5, 130.9, 126.3 (d, $J_{C-P} = 2.3$ Hz), 125.8, 124.0, , 123.7, 116.5 (d, $J_{C-P} = 10.1$ Hz), 114.0, 104. 2 (d, $J_{C-P} = 188.6$ Hz), 61.4, 61.3, 55.6, 26.4, 16.7, 16.6 ; ³¹P NMR (162MHz, DMSO- d_6) δ 20.76; **ESI-MS** (m/z) calculated for C₂₁H₂₆N₂O₄P (M+H)⁺ 401.1625, found: 401.1622.

Diethyl (1-((4-fluorophenyl)amino)-3-methylisoquinolin-4-yl)phos phonate (3c)

Product **3c** was obtained as white solid (51% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.58 (s, 1H), 8.72 (d, *J* = 8.6 Hz, 1H), 8.52 (d, *J* = 8.2 Hz, 1H), 7.93 (dd, *J* = 8.9, 5.1 Hz, 2H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 8.8 Hz, 2H), 4.15 – 3.84 (m, 4H), 2.74 (s, 3H), 1.20 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.2 (d, *J* = 88.7 Hz), 157.9 (d, *J*_{C-F} = 136.2 Hz), 154.5 (d, *J* = 1.7 Hz), 138.5 (d, *J* = 12.8 Hz), 137.0 (d, *J* = 2.4 Hz), 131.1, 126.4 (d, *J* = 2.1 Hz), 126.0, 123.9, 123.9, 123.8, 116.6 (d, *J* = 10.1 Hz), 115.4, 115.2, 105.2 (d, *J*_{C-F} = 188.1 Hz), 61.5, 61.4, 26.4, 16.7, 16.6; ³¹P NMR (162MHz, DMSO-*d*₆) δ 20.41; **ESI-MS** (*m*/*z*) calculated for C₂₀H₂₃FN₂O₃P (M+H)⁺ 389.1425, found: 389.1425

Diethyl (1-((4-chlorophenyl)amino)-3-methylisoquinolin-4-yl)phos phonate (3d)

Product **3d** was obtained as white solid (46% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.63 (s, 1H), 8.73 (d, *J* = 8.2 Hz, 1H), 8.53 (d, *J* = 7.2 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.75 (t, 7.5 Hz, 1H), 7.60 (t, 7.2 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 4.13 – 3.86 (m, 4H), 2.76 (s, 3H), 1.20 (t, *J* = 6.6 Hz, 6H); ¹³**C NMR**(101 MHz, DMSO-*d*₆) δ 158.5 (d, *J*_{*C*-*P*} = 14.8 Hz), 154.2 (d, *J*_{*C*-*P*} = 2.1 Hz), 139.7, 138.5 (d, *J*_{*C*-*P*} = 12.8 Hz), 131.2, 128.7, 126.7, 126.4 (d, *J*_{*C*-*P*} = 2.2 Hz), 126.1, 123.8, 123.4, 116.7 (d, *J*_{*C*-*P*} = 10.1 Hz), 105.7 (d, *J*_{*C*-*P*} = 187.8 Hz), 61.5, 61.5, 26.3, 16.7, 16.6; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 20.17; **ESI-MS** (*m*/*z*) calculated for C₂₀H₂₃ClN₂O₃**P** (M+H)⁺ 405.1129, found: 405.1128.

Diethyl (1-((4-bromophenyl)amino)-3-methylisoquinolin-4-yl)phos phonate (3e)

Product **3e** was obtained as white solid (42% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 9.64 (s, 1H), 8.73 (d, J = 8.6 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.76 (t, 7.2Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H), 4.13 – 3.88 (m, 4H), 2.77 (s, 3H), 1.21 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.4 (d, $J_{C-P} = 14.6$ Hz), 154.2 (d, $J_{C-P} = 1.8$ Hz), 140.1, 138.5 (d, $J_{C-P} = 12.7$ Hz), 131.6, 131.2, 126.4, 126.1, 123.8, 123.8, 116.7 (d, $J_{C-P} = 10.3$ Hz), 114.7, 105. 8 (d, $J_{C-P} = 187.8$ Hz), 61.5, 61.5, 26.3, 16.7, 16.6; ³¹P NMR (162MHz, DMSO- d_6) δ 20.15; ES I-MS (m/z) calculated for C₂₀H₂₃BrN₂O₃P (M+H)⁺ 449.0624, found: 449.0629.

Diethyl (1-((4-iodophenyl)amino)-3-methylisoquinolin-4-yl)phosphonate (3f)

Product **3f** was obtained as white solid (41% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.61 (s, 1H), 8.73 (d, *J* = 8.4 Hz, 1H), 8.53 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 8.9 Hz, 2H), 7.75(t, *J* =8.2 Hz, 1H), 7.69 (d, *J* = 8.9 Hz, 2H), 7.60 (t, *J* = 8.1 Hz, 1H), 4.13 – 3.86 (m, 4H), 2.76 (d, *J* = 1.8 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 158.41 (d, *J*_{C-P} = 14.6 Hz), 154.2 (d, *J*_{C-P} = 1.9 Hz), 140.6, 138.5, 137.4, 131.2, 126.4, 126.1, 124.1, 123.8, 116.8 (d, *J*_{C-P} = 10.1 Hz), 105.8 (d, *J*_{C-P} = 187.7 Hz), 100.0, 61.5, 61.5, 26.3, 16.7, 16.6; ³¹**P NMR** (162MHz, DMSO-*d*₆) δ 20.15; **ESI-MS** (*m*/*z*) calculated for C₂₀H₂₃IN₂O₃**P** (M+H)⁺ 497.0485, found: 497.0497.

Diethyl (1-((3-bromophenyl)amino)-3-methylisoquinolin-4-yl)phos phonate (3g)

Product **3g** was obtained as white solid (52% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.45 (s, 1H), 8.73 (d, *J* = 8.6 Hz, 1H), 8.46 (d, *J* = 8.3 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.65 (d, *J* = 9.2 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 8.3 Hz, 1H), 7.21 (t, *J* = 7.0 Hz, 1H), 4.11–3.88 (m, 4H), 2.59 (s, 3H), 1.20 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 158.9 (d, *J*_{C-P} = 14.8 Hz), 155.3 (d, *J*_{C-P} = 1.5 Hz), 138.7, 138.6 (d, *J*_{C-P} = 13.1 Hz), 133.2, 131.1, 129.7, 128.5, 127.7, 126.4, 126.1, 123.8, 121.8, 116.3 (d, *J*_{C-P} = 10.5 Hz), 104.8 (d, *J*_{C-P} = 188.4 Hz), 61.4, 61.4, 26.5, 16.7, 16.6 ; ³¹**P NMR** (162MHz, DMSO-*d*₆) δ 20.59; **ES I-MS** (*m*/*z*) calculated for C₂₀H₂₃BrN₂O₃P (M+H)⁺ 449.0624, found: 449.0632.

Diethyl (3,6-dimethyl-1-(phenylamino)isoquinolin-4-yl)phos phonate (3h)

Product **3h** was obtained as white solid (72% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.42 (s, 1H), 8.47 (dd, *J* = 9.3, 2.4 Hz, 1H), 8.24 (d, *J* = 2.5 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.34 (t, 2H), 7.22 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.08 – 7.00 (m, 1H), 4.10 – 3.90 (m, 4H), 3.87 (s, 3H), 2.71 (d, *J* = 1.7 Hz, 3H), 1.21 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 160.2 (d, *J*_{C-P} = 13.6 Hz), 154.5 (d, *J*_{C-P} = 1.8 Hz), 140.4, 140.0 (d, *J*_{C-P} = 13.2 Hz), 136.4, 128.8, 126.7, 126.1, 125.1, 123.6, 122.3, 115.2 (d, *J*_{C-P} = 10.1 Hz), 104.1 (d, *J*_{C-P} = 188.7 Hz), 61.7, 61.6, 26.4, 26.4, 16.6, 16.6; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 19.80; **ESI-MS** (*m*/*z*) calculated for C₂₁H₂₆N₂O₃P (M+H)⁺ 385.1676, found: 385.1672.

Diethyl (6-methoxy-3-methyl-1-(phenylamino)isoquinolin-4-yl)phosphonate (3i)

Product **3i** was obtained as white solid (66% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.42 (s, 1H), 8.47 (dd, *J* = 9.3, 2.4 Hz, 1H), 8.24 (d, *J* = 2.5 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.5Hz, 2H), 7.22 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.08 – 7.00 (m, 1H), 4.10 – 3.90 (m, 4H), 3.87 (s, 3H), 2.71 (d, *J* = 1.7 Hz, 3H), 1.21 (t, *J* = 7.0 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 161.0, 159.4 (d, *J*_{C-P} = 15.2 Hz), 154.3 (d, *J*_{C-P} = 1.8 Hz), 141.0, 140.8 (d, *J*_{C-P} = 1.7 Hz), 128.8, 125.8, 123.1, 121.9, 116.6, 111.4 (d, *J*_{C-P} = 10.1 Hz), 106.7, 104.5 (d, *J*_{C-P} = 188.1 Hz), 61.4, 61.4, 55.7, 26.4, 16.7, 16.6; ³¹**P** NMR (162 MHz, DMSO-*d*₆) δ 20.87; **ESI-MS** (*m*/*z*) calculated for C₂₁H₂₆F₃N₂O₄P (M+H)⁺ 401.1625, found: 401.1623.

Diethyl (6-(dimethylamino)-3-methyl-1-(phenylamino)isoquinolin-4-yl)phosphonate (3j)

Product 3j was obtained as white solid (71% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 9.23 (s, 1H),

8.33 (dd, J = 9.4, 2.5 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.76 (d, J = 2.5 Hz, 1H), 7.44 – 7.27 (m, 2H), 7.14 (dd, J = 9.3, 2.5 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 4.13 – 4.01 (m, 2H), 3.94 – 3.81 (m, 2H), 3.06 (s, 6H), 2.69 (d, J = 1.7 Hz, 3H), 1.21 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.1 (d, J_{C-P} = 15.3 Hz), 154.2, 151.5, 141.2, 140.3 (d, $J_{C-P} = 12.2$ Hz), 128.7, 124.9, 122.6, 121.6, 113.8, 108.2 (d, $J_{C-P} = 10.0$ Hz), 105.0, 103.6 (d, $J_{C-P} = 187.4$ Hz), 61.1, 61.1,40.16, 40.16, 26.5, 16.7, 16.7; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 20.86; **ES I-MS** (*m*/*z*) calculated for C₂₂H₂₉N₃O₃P (M+H)⁺ 414.1941, found: 414.1945.

Diethyl (6-chloro-3-methyl-1-(phenylamino)isoquinolin-4-yl)phosphonate (3k)

Product **3k** was obtained as white solid (81% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.67 (s, 1H), 8.97 (d, *J* = 2.1 Hz, 1H), 8.60 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.66 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 4.27 – 3.78 (m, 4H), 2.72 (d, *J* = 1.6 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.2 (d, *J*_{*C*-*P*} = 13.6 Hz), 154.4 (d, *J*_{*C*-*P*} = 1.9 Hz), 140.3, 140.0 (d, *J*_{*C*-*P*} = 13.2 Hz), 136.4, 128.8, 126.3, 126.2, 125.2 (d, *J*_{*C*-*P*} = 2.0 Hz), 123.6, 122.2, 115.1 (d, *J*_{*C*-*P*} = 10.2 Hz), 104.2 (d, *J*_{*C*-*P*} = 188.8 Hz), 61.7, 61.7, 26.4, 16.6, 16.6; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 19.73; **ESI-MS** (*m*/*z*) calculated for C₂₀H₂₃ClN₂O₃P (M+H)⁺ 405.1129, found: 405.1126.

Diethyl (3-methyl-1-(phenylamino)-6-(trifluoromethyl)isoquinolin-4-yl)phosphonate (31)

Product **31** was obtained as white solid (80% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 9.82 (s, 1H), 9.31 (s, 1H), 8.80 (d, J = 10.0 Hz, 1H), 7.91 (t, J = 10.2 Hz, 3H), 7.40 (t, J = 8.3Hz, 2H), 7.12 (t, J =7.4 Hz, 1H), 4.20 – 3.90 (m, 4H), 2.76 (d, J = 1.6 Hz, 3H), 1.22 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 160.4 (d, J = 13.8 Hz), 154.4 (d, J = 1.7 Hz), 140.2, 138.3 (d, J = 13.0 Hz), 130.9 (d, $J = 31.3 \text{ Hz}, 128.9, 125.8, 124.6 \text{ (d, } J_{C-F} = 272.7 \text{ Hz}), 123.8, 123.7, 122.3, 121.4 \text{ (d, } J = 3.1 \text{ Hz}), 118.3 \text{ (d, } J = 9.6 \text{ Hz}), 105.2 \text{ (d, } J_{C-P} = 188.9 \text{ Hz}), 61.8, 61.7, 26.3, 16.5, 16.5; {}^{31}\text{P} \text{NMR} (162 \text{ MHz}, \text{DMSO-}d_6)$ $\delta 19.34; \text{ ESI-MS}(m/z) \text{ calculated for } C_{21}H_{23}F_3N_2O_3P(M+H)^+439.1393, \text{ found:} 439.1397.$

Diethyl (7-methoxy-3-methyl-1-(phenylamino)isoquinolin-4-yl)phosphonate (3m)

Product **3m** was obtained as white solid (65% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 9.38 (s, 1H), 8.69 (d, J = 9.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 3H), 7.54 – 7.23 (m, 3H), 7.08 (t, J = 7.3 Hz, 1H), 4.08-3.91 (m, 7H), 2.72 (d, J = 1.4 Hz, 3H), 1.20 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 157.5, 156.0 (d, $J_{C-P} = 14.4$ Hz), 153.7 (d, $J_{C-P} = 1.0$ Hz), 140.8, 133.3 (d, $J_{C-P} = 13.1$ Hz), 128.8, 128.2 (d, $J_{C-P} = 1.6$ Hz), 123.3, 122.2, 122.0, 117.9 (d, $J_{C-P} = 10.3$ Hz), 105.2 (d, $J_{C-P} = 187.4$ Hz), 103.7, 61.4, 61.4, 56.3, 26.0, 16.6, 16.6 ; ³¹P NMR (162 MHz, DMSO- d_6) δ 20.43; ESI-MS (m/z) calculated for C₂₁H₂₆F₃N₂O₄P (M+H)⁺ 401.1625, found: 401.1629

Diethyl (8-fluoro-3-methyl-1-(phenylamino)isoquinolin-4-yl)phosphonate (3n)

Product **3n** was obtained as white solid (85% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.05 (d, *J* = 15.3 Hz, 1H), 8.58 (d, *J* = 8.7 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.76 – 7.64 (m, 1H), 7.42 – 7.27(m, 3H), 7.08 (t, *J* = 7.4 Hz, 1H), 4.18 – 3.82 (m, 4H), 2.74 (d, *J* = 1.7 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.3, 159.0 (dd, *J*_{C-F} = 178.1, 7.8 Hz), 152.2 (d, *J* = 4.3 Hz), 141.8 (dd, *J* = 92.0, 25.9 Hz), 139.9, 131.7 (d, *J* = 10.3 Hz), 129.7, 128.9, 126.1, 123.8, 122.6, 122.2, 111.7 (d, *J* = 23.6 Hz), 106.7 (t, *J* = 10.6 Hz), 104.9 (d, *J*_{C-P} = 190.0 Hz), 61.6, 61.6, 26.3, 16.6, 16.5; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 20.17; **ES I-MS** (*m*/*z*) calculated for C₂₀H₂₃FN₂O₃P (M+H)⁺ 389.1425, found: 389.1436.

Diethyl(3-methyl-1-(naphthalen-2-ylamino)isoquinolin-4-yl)phosphonate (30)

Product **30** was obtained as white solid (85% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.83 (s, 1H), 8.76 (d, *J* = 8.6 Hz, 1H), 8.67 (d, *J* = 8.3 Hz, 1H), 7.96 (dd, *J* = 15.3, 8.1 Hz, 2H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 8.2 Hz, 1H), 7.68 – 7.57 (m, 3H), 7.57 – 7.43 (m, 2H), 4.10 – 3.89 (m, 4H), 2.46 (d, *J* = 1.7 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 6H) ; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.19 (d, *J*_{C-P} = 14.7 Hz), 156.7 (d, *J*_{C-P} = 1.9 Hz), 138.7 (d, *J*_{C-P} = 13.1 Hz), 136.2, 134.4, 131.0, 130.5, 128.6, 126.4, 126.4, 126.4, 126.2, 126.1, 126.0, 125.0, 124.1, 124.0, 116.3 (d, *J*_{C-P} = 10.4 Hz), 104.2 (d, *J*_{C-P} = 189.0 Hz), 61.4, 61.3, 26.5, 16.7, 16.6; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 21.83; **ESI-MS** (*m*/*z*) calculated for C₂₄H₂₆N₂O₃P (M+H)⁺ 421.1676, found: 421.1665.

Diethyl(3-methyl-1-(thiophen-2-ylamino)isoquinolin-4-yl)phosphonate (3p)

Product **3p** was obtained as white solid (70% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 10.95 (s, 1H), 8.72 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 8.5 Hz, 1H), 7.76 (m, 1H), 7.63 (m, 1H), 7.06 (dd, J = 3.7, 1.6 Hz, 1H), 6.99 (dd, J = 5.5, 1.4 Hz, 1H), 6.95 (m, 1H), 4.17 – 3.84 (m, 4H), 2.88 (d, J = 1.9 Hz, 3H), 1.21 (t, J = 7.0 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO- d_6) δ 158.3 (d, $J_{C-P} = 15.1$ Hz), 151.0, 141.7, 138.3 (d, $J_{C-P} = 12.8$ Hz), 131.2, 126.5 (d, $J_{C-P} = 2.5$ Hz), 126.2, 124.2, 123.4, 117.9, 116.0 (d, $J_{C-P} = 10.3$ Hz), 112.0, 104.9(d, $J_{C-P} = 187.7$ Hz), 61.5, 61.5, 25.5, 16.7, 16.6; ³¹**P** NMR (162 MHz, DMSO- d_6) δ 20.18; **ESI-MS** (m/z) calculated for C₁₈H₂₂N₂O₃PS (M+H)⁺ 377.1083, found: 377.1083.

Diethyl (2-phenyl-1H-indol-3-yl)phosphonate (4a)

Product **4a** was obtained as white solid (65% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.16 (s, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.56 – 7.42 (m, 4H), 7.22 (t, J = 7.4 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 3.95 – 3.79 (m, 4H), 1.07 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 145.7 (d, $J_{C-P} = 23.3$ Hz), 136.7 (d, $J_{C-P} = 15.0$ Hz), 132.2, 130.4 (d, $J_{C-P} = 13.1$ Hz), 130.0, 129.4, 128.5, 122.9, 121.4, 121.2, 112.2, 96.9 (d, $J_{C-P} = 214.5$ Hz), 61.2, 61.2, 16.5, 16.4; ³¹P NMR (162MHz, DMSO-*d*₆) δ 16.87; **ESI-MS** (*m*/*z*) calculated for C₁₈H₂₁NO₃P (M+H)⁺ 330.1254, found: 330.1253.

Diethyl (5-methyl-2-phenyl-1 H-indol-3-yl)phos phonate (4b)

Product **4b** was obtained as white solid (60% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 12.04 (d, J = 3.9 Hz, 1H), 7.76 -7.73 (m, 3H), 7.53 – 7.45 (m, 3H), 7.36 (dd, J = 8.2, 2.1 Hz, 1H), 7.04 (dd, J = 8.3, 1.3 Hz, 1H), 3.99 – 3.71 (m, 4H), 2.41 (s, 3H), 1.07 (t, J = 7.1 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 145.6 (d, J_{C-P} = 23.3 Hz), 135.1 (d, J_{C-P} = 15.1 Hz), 132.3, 130.8 (d, J_{C-P} = 13.2 Hz), 129.9, 129.8, 129.3, 128.4, 124.4, 121.0, 111.9, 96.3 (d, J_{C-P} = 214.2 Hz), 61.2, 61.1, 21.9, 16.4, 16.4; ³¹**P** NMR (162 MHz, DMSO-*d*₆) δ 17.15; **ESI-MS** (*m*/*z*) calculated for C₁₉H₂₃NO₃P (M+H)⁺ 344.1410, found: 344.1407.

Diethyl (5-methoxy-2-phenyl-1H-indol-3-yl)phos phonate (4c)

Product **4c** was obtained as white solid (41% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.03 (d, J = 3.8 Hz, 1H), 7.75 (dd, J = 8.0, 1.5 Hz, 2H), 7.54 – 7.45 (m, 3H), 7.42 -7.35 (m, 2H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.95 – 3.80 (m, 4H), 3.78 (s, 3H), 1.08 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 154.9, 145.8 (d, $J_{C-P} = 23.2$ Hz), 132.2, 131.7 (d, $J_{C-P} = 15.0$ Hz), 131.2 (d, $J_{C-P} = 12.8$ Hz), 129.8, 129.3, 128.5, 113.0, 112.9, 103.0, 96.5 (d, $J_{C-P} = 214.5$ Hz), 61.2, 61.2, 55.7, 16.5, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 17.22; **ESI-MS** (m/z) calculated for C₁₉H₂₃NO4P (M+H)⁺ 360.1359, found: 360.1369.

Diethyl (5-fluoro-2-phenyl-1H-indol-3-yl)phos phonate (4d)

Product **4d** was obtained as white solid (67% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.30 (d, J = 3.7 Hz, 1H), 7.77 (m, 2H), 7.63 (dd, J = 10.4, 2.6 Hz, 1H), 7.56 – 7.44 (m, 4H), 7.08 (m, 1H), 4.04 – 3.76 (m, 4H), 1.07 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.2 (d, $J_{C-F} = 232.9$ Hz), 147.2 (d, J = 22.7 Hz), 133.4 (d, J = 14.8 Hz), 131.8, 131.2 (dd, J = 12.7, 11.1 Hz), 129.9, 129.6, 128.6, 113.4 (d, J = 9.8 Hz), 111.2 (d, J = 26.1 Hz), 106.1 (d, J = 24.9 Hz), 97.2 (dd, $J_{C-P} = 215.1$, 4.6 Hz), 61.4, 61.3, 16.4, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 16.29; **ESI-MS** (m/z) calculated for C₁₈H₂₀FNO₃P (M+H)⁺ 348.1159, found: 348.1159.

Diethyl (5-chloro-2-phenyl-1 H-indol-3-yl)phos phonate (4e)

Product **4e** was obtained as white solid (66% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.39 (d, J = 3.7 Hz, 1H), 7.95 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 7.8, 1.7 Hz, 2H), 7.55-7.48 (m, 4H), 7.24 (dd, J = 8.6, 2.1 Hz, 1H), 4.13 – 3.70 (m, 4H), 1.06 (t, J = 7.0 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO- d_6) δ 147.0 (d, $J_{C-P} = 22.5$ Hz), 135.2 (d, $J_{C-P} = 14.7$ Hz), 131.8 (d, $J_{C-P} = 13.1$ Hz), 131.6, 129.9, 129.7, 128.6, 125.9, 123.0, 120.5, 113.8, 96.9 (d, $J_{C-P} = 214.7$ Hz), 61. 4, 61.4, 16.4, 16.3; ³¹**P** NMR (162 MHz, DMSO- d_6) δ 15.93; **ESI-MS** (m/z) calculated for C₁₈H₂₀ClNO₃P (M+H)⁺ 364.0864, found: 364.0857.

Diethyl (5-bromo-2-phenyl-1 H-indol-3-yl)phosphonate (4f)

Product **4f** was obtained as white solid (64% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.36 (d, *J* = 3.5 Hz, 1H), 8.31 (s, 1H), 7.76 (dd, *J* = 7.5, 1.6 Hz, 2H), 7.50 (m, 3H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.32 (dd, *J* = 8.5, 1.9 Hz, 1H), 3.96 – 3.75 (m, 4H), 1.06 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 146.8 (d, *J*_{C-P} = 22.4 Hz), 135.5 (d, *J*_{C-P} = 14.7 Hz), 132.4 (d, *J*_{C-P} = 13.0 Hz), 131.6, 129.9, 129.7, 128.6, 125.5, 123.5, 114.3, 113.9, 96.8 (d, *J*_{C-P} = 214.7 Hz), 61.5, 61.4, 16.4, 16.3; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 15.90; **ESI-MS** (*m*/*z*) calculated for C₁₈H₂₀BrNO₃P (M+H)⁺ 408.0359, found: 408.0369.

Diethyl (5-iodo-2-phenyl-1H-indol-3-yl)phosphonate (4g)

Product **4g** was obtained as white solid (41% yield); ¹**H NMR** (400 MHz, DM SO-*d*₆) δ 12.36 (d, J = 3.5 Hz, 1H), 8.31 (s, 1H), 7.76 (dd, J = 7.5, 1.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 3H), 7.44 (t, J = 7.4 Hz, 1H), 7.32 (dd, J = 8.5, 1.9 Hz, 1H), 3.96 – 3.75 (m, 4H), 1.06 (t, J = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 146.3 (d, J_{C-P} = 22.5 Hz), 135.8 (d, J_{C-P} = 14.8 Hz), 134.7, 133.2 (d, J_{C-P} = 13.4 Hz), 131.6 (d, J_{C-P} = 10.7 Hz), 130.9, 129.9, 129.7, 129.7, 128.7, 128.6, 127.9, 114.6, 96.4 (d, J_{C-P} = 214.7 Hz), 61.4, 61.4, 16.4, 16.3; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 15.97; **ESI-MS** (*m*/*z*) calculated for C₁₈H₂₀INO₃P (M+H)⁺ 456.0220, found: 456.0233.

Diethyl (5-cyano-2-phenyl-1H-indol-3-yl)phosphonate (4h)

Product **4h** was obtained as white solid (61% yield); ¹**H NMR** (400 MHz, DM SO-*d*₆) δ 12.75 (d, *J* = 1.8 Hz, 1H), 8.34 (d, *J* = 0.7 Hz, 1H), 7.79 (dd, *J* = 7.4, 2.2 Hz, 2H), 7.62 (m, 2H), 7.54 (m, 3H), 4.02 – 3.79 (m, 4H), 1.07 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 147.9 (d, *J*_{C-P} = 22.0 Hz), 138.7 (d, *J*_{C-P} = 14.4 Hz), 131.2, 130.4(d, *J* = 13.2 Hz), 130.0, 130.0, 128.7, 126.6, 125.7, 120.7, 113.7, 103.5, 98.1 (d, *J*_{C-P} = 214.4 Hz), 61.7, 61.6, 16.4, 16.3; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 15.02; **ESI-MS** (*m*/*z*) calculated for C₁₉H₂₀N₂O₃P (M+H)⁺ 355.1206, found: 355.1211.

Diethyl (6-methyl-2-phenyl-1 H-indol-3-yl)phos phonate (4i)

Product **4i** was obtained as white solid (61% yield); ¹**H NMR** (400 MHz, DM SO-*d*₆) δ 12.00 (d, *J* = 3.8 Hz, 1H), 7.86 – 7.68 (m, 3H), 7.67 – 7.36 (m, 3H), 7.26 (s, 1H), 6.99 (d, *J* = 9.1 Hz, 1H), 4.06 – 3.66 (m, 4H), 2.42 (s, 3H), 1.07 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 145.1 (d, *J*_{C-P} = 23.4

Hz), 137.1 (d, $J_{C-P} = 15.0$ Hz), 132.3, 132.1, 129.9, 129.2, 128.4, 128.3 (dd, $J_{C-P} = 43.6$, 30.4 Hz), 123.0, 121.1, 111.9, 96.7 (d, $J_{C-P} = 214.5$ Hz), 61.2, 61.2, 21.8, 16.5, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 17.14; **ESI-MS** (*m*/*z*) calculated for C₁₉H₂₃NO₃P (M+H)⁺ 344.1410, found: 344.1419.

Diethyl (6-isopropyl-2-phenyl-1H-indol-3-yl)phosphonate (4j)

Product **4j** was obtained as white solid (64% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.00 (d, J = 3.8 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.74 (dd, J = 7.9, 1.3 Hz, 2H), 7.49 (m, 3H), 7.28 (s, 1H), 7.07 (dd, J = 8.4, 1.2 Hz, 1H), 3.98 – 3.78 (m, 4H), 3.04 – 2.95 (m, 1H), 1.26 (d, J = 6.9 Hz, 6H), 1.07 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 145.3 (d, $J_{C-P} = 23.4$ Hz), 143.6, 137.0 (d, $J_{C-P} = 15.0$ Hz), 132.3, 129.9, 129.2, 128.6 (d, $J_{C-P} = 13.2$ Hz), 128.4, 121.2, 120.5, 109.0, 96.6 (d, $J_{C-P} = 214.3$ Hz), 61.2, 61.1, 34.0, 24.8, 24.8, 16.5, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 17.12; **ES I-MS** (m/z) calculated for C₂₁H₂₇NO₃P (M+H)⁺ 372.1723, found: 372.1730.

Diethyl (7-fluoro-2-phenyl-1H-indol-3-yl)phosphonate (4k)

Product **4k** was obtained as white solid (66% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.58 (d, J = 3.7 Hz, 1H), 7.89 – 7.59 (m, 3H), 7.51 (m, 3H), 7.23 – 6.85 (m, 2H), 3.87 (m, 4H), 1.06 (t, J = 7.0 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO- d_6) δ 149.4 (dd, $J_{C-F} = 244.7$, 2.3 Hz), 147.0 (d, J = 23.0 Hz), 134.0 (dd, J = 13.7, 5.1 Hz), 131.6, 130.4, 129.6, 128.3, 124.8 (dd, J = 15.1, 13.5 Hz), 121.7 (d, J = 6.2 Hz), 117. 5 (d, J = 3.3 Hz), 107.8 (d, J = 15.8 Hz), 98.5 (d, $J_{C-P} = 214.4$ Hz), 61.4, 61.4, 16.4, 16.3; ³¹**P** NMR (162 MHz, DMSO- d_6) δ 15.84; **ESI-MS** (m/z) calculated for C₁₈H₂₀FNO₃P (M+H)⁺ 348.1159, found: 348.1163.

Diethyl (7-bromo-2-phenyl-1H-indol-3-yl)phos phonate (41)

Product **41** was obtained as white solid (60% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 12.27 (d, *J* = 3.5 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.71 (m, 2H), 7.53 – 7.48 (m, 3H), 7.45 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.12 (t, *J* = 7.9 Hz, 1H), 4.01 – 3.72 (m, 4H), 1.05 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.4 (d, *J*_{C-P} = 22.5 Hz), 135.3 (d, *J*_{C-P} = 14.7 Hz), 131.8 (d, *J*_{C-P} = 13.6 Hz), 131.5 (d, *J*_{C-P} = 0.4 Hz), 130.7, 129.6, 128.1, 125.8, 122.7, 120.7, 104.6 (d, *J*_{C-P} = 1.9 Hz), 99.1 (d, *J*_{C-P} = 214.0 Hz), 61.4, 61.3, 16.4, 16.3; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 15.53; **ESI-MS** (*m*/*z*) calculated for C₁₈H₂₀BrNO₃P (M+H)⁺ 408.0359, found: 408.0369

Diethyl (2-phenyl-1H-benzo[f]indol-3-yl)phos phonate (4m)

Product **4m** was obtained as white solid (60% yield); ¹**H** NMR (400 MHz, DM SO-*d*₆) δ 12.78 (d, *J* = 3.8 Hz, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 8.06 (d, *J* = 8.8 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.66 – 7.45 (m, 6H), 4.07 – 3.78 (m,4H), 1.08 (t, *J* = 7.1 Hz, 6H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 144.0 (d, *J*_{C-P} = 22.9 Hz), 132.3, 131.6 (d, *J*_{C-P} = 15.0 Hz), 130.5, 130.4, 129.2, 128.8, 128.4, 126.7 (d, *J*_{C-P} = 13.3 Hz), 126.3, 124.9, 122.10 (d, *J*_{C-P} = 1.0 Hz), 122.0, 121.7, 121.0, 99.3 (d, *J*_{C-P} = 213.2 Hz), 61.3, 61.3, 16.5, 16.4; ³¹**P** NMR (162 MHz, DMSO-*d*₆) δ 16.58; **ESI-MS** (*m*/*z*) calculated for C₂₂H₂₃NO₃P (M+H)⁺ 380.1410, found: 380.1419.

Diethyl (2-(p-tolyl)-1 H-indol-3-yl)phos phonate (4n)

Product **4n** was obtained as white solid (57% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.09 (d, J = 3.9 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 9.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.20- 7.14(m, 2H), 3.97 – 3.79 (m, 4H), 2.38 (s, 3H), 1.08 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 145.9 (d, $J_{C-P} = 23.4$ Hz), 138.9, 136. 7 (d, $J_{C-P} = 15.0$ Hz), 130.5 (d, $J_{C-P} = 13.2$ 17

Hz), 129.8, 129.3, 129.0, 122.7, 121.3, 121.2, 112.1, 96.5 (d, $J_{C-P} = 214.7$ Hz), 61.2, 61.2, 21.4, 16.5, 16.4; ³¹**P** NMR (162 MHz, DMSO- d_6) δ 17.16; **ES I-MS** (m/z) calculated for C₁₉H₂₃NO₃P (M+H)⁺ 344.1410, found: 344.1404

Diethyl (2-(4-chlorophenyl)-1H-indol-3-yl)phosphonate (40)

Product **40** was obtained as white solid (52% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 12.50 – 12.06 (m, 1H), 7.91 (d, *J* = 7.5 Hz, 1H), 7.78 (dd, 2H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.15 (m, 2H) , 4.09 – 3.72 (m, 4H), 1.10 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 144.3 (d, *J*_{C-P} = 23.2 Hz), 136.8 (d, *J*_{C-P} = 15.0 Hz), 134.2, 131.8, 131.0, 130.3 (d, *J*_{C-P} = 12.9 Hz), 129.32 (d, *J*_{C-P} = 111.5 Hz), 128.5, 123.1, 121.4, 112.3, 97.4 (d, *J*_{C-P} = 214.1 Hz), 61.3, 61.3, 16.5, 16.4 ; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 16.57; **ES I-MS** (m/z) calculated for C₁₈H₂₀ClNO₃P (M+H)⁺ 364.0864, found: 364.0871.

Diethyl (2-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)phosphonate (4p)

Product **4p** was obtained as white solid (53% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.35 (d, J = 2.5 Hz, 1H), 7.93 (m, 5H), 7.51 (d, J = 8.1 Hz, 1H), 7.26-7.19 (m, 2H), 4.09 – 3.66 (m, 4H), 1.09 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 143.9 (d, J = 23.1 Hz), 136.9 (d, J = 14.9 Hz), 136.2, 130.9, 130.2 (d, J = 12.7 Hz), 129.5 (d, J = 31.9 Hz), 125.3 (d, J = 3.5 Hz), 125.3 (d, J = 3.8 Hz), 124.7 (d, $J_{C-F} = 272.1$ Hz), 123.4 121.5, 112.4, 98.2 (d, $J_{C-P} = 213.7$ Hz), 61.4, 61.4, 16.4, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 16.16; **ESI-MS** (m/z) calculated for C₁₉H₂₀F₃NO₃P (M+H)⁺ 398.1127, found: 398.1125.

Diethyl (2-(3-methoxyphenyl)-1H-indol-3-yl)phosphonate (4q)

Product **4q** was obtained as white solid (43% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 12.15 (d, J = 3.9 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.48-7.33 (m, 4H), 7.24 – 7.18 (m, 1H), 7.18 – 7.12 (m, 1H), 7.04 (ddd, J = 8.2, 2.5, 0.8 Hz, 1H), 3.96 – 3.85 (m, 4H), 3.83 (s, 3H), 1.08 (t, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 159.2, 145.4 (d, $J_{C\cdot P} = 23.2$ Hz), 136.6 (d, $J_{C\cdot P} = 15.0$ Hz), 133.3, 130.5 (d, $J_{C\cdot P} = 13.2$ Hz), 129.6, 122.9, 122.1, 121.4, 121.3, 115.5, 115.2, 112.2, 97.0 (d, $J_{C\cdot P} = 214.3$ Hz), 61.3, 61.2, 55.6, 16.5, 16.4; ³¹P NMR (162 MHz, DMSO- d_6) δ 16.97; **ESI-MS** (m/z) calculated for C₁₉H₂₃NO₄P (M+H)⁺ 360.1359, found: 360.1366.

Diethyl (2-(thiophen-2-yl)-1 H-indol-3-yl)phos phonate (4r)

Product **4r** was obtained as white solid (58% yield); ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 12.16 (d, J = 3.6 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.77-7.72 (m, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.17 – 7.11 (m, 1H), 4.02 – 3.84 (m, 4H), 1.13 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 138.5 (d, J_{C-P} = 22.4 Hz), 136.6 (d, J_{C-P} = 15.0 Hz), 132.7, 130.66 (dd, J = 73.3, 60.3 Hz), 129.9, 128.8, 128.7 (d, J_{C-P} = 76.7 Hz), 128.0, 123.2, 121.4, 112.1, 97.1 (d, J_{C-P} = 213.7 Hz), 61.4, 61.3, 16.5, 16.5; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 16.40; **ESI-MS** (*m*/*z*) calculated for C₁₆H₁₉NO₃PS (M+H)⁺ 336.0818, found: 336.0818.

Diethyl(2-methyl-1 H-in dol-3-yl)phos phite (4s)

Product **4s** was obtained as white solid (86% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 11.76 (d, J = 2.8 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.36 (m, 1H), 7.08 (m, 2H), 3.92 (m, 4H), 2.59 (d, J = 1.7 Hz, 3H), 1.19 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 145.6 (d, J_{C-P} = 25.2 Hz), 136.1 (d, J_{C-P} = 14.6 Hz), 129.5 (d, J_{C-P} = 13.1 Hz), 121.9, 120.8, 120.0, 111.5, 96.1 (d, J_{C-P} = 215.8 Hz), 61.0, 19

60.9, 16.7, 16.6, 13.4; ³¹**P** NMR (162 MHz, DMSO- d_6) δ 18.20; **ES I-MS** (*m/z*) calculated for C₁₃H₁₉NO₃P (M+H)⁺ 268.1097, found: 268.1099

2,5-Dimethyl-1H-indol-3-yl diethyl phosphite (4t)

Product **4t** was obtained as white solid (86% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.64 (d, *J* = 3.4 Hz, 1H), 7.44 (s, 1H), 7.24 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.92 (dd, *J* = 8.2, 1.3 Hz, 1H), 4.04 – 3.76 (m, 4H), 2.56 (d, *J* = 1.7 Hz, 3H), 2.36 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 6H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 145.5 (d, *J*_{C-P} = 25.3 Hz), 134.4 (d, *J*_{C-P} = 14.7 Hz), 129.8 (d, *J*_{C-P} = 13.1 Hz), 129.3, 123.4 , 119.8, 111.2, 95.5 (d, *J*_{C-P} = 215.6 Hz), 60.9, 60.9, 21.8, 16.7, 16.7, 13.5; ³¹**P NMR** (162 MHz, DMSO-*d*₆) δ 18.51; **ESI-MS** (*m*/*z*) calculated for C₁₄H₂₁NO₃P (M+H)⁺ 282.1254, found: 282.1262.

Diethyl (2-ethyl-1H-indol-3-yl) phosphite (4u)

Product **4u** was obtained as white solid (84% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 11.74 (d, J = 3.2 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.37 (m, 1H), 7.09 (m, 2H), 4.03 – 3.85 (m, 4H), 3.01 (dd, J = 7.5, 1.1 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H), 1.19 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 151.4 (d, $J_{C-P} = 26.0$ Hz), 136.2 (d, $J_{C-P} = 14.6$ Hz), 129.3 (d, $J_{C-P} = 13.1$ Hz), 122.0, 120.8, 120.2, 111.7 , 95.2 (d, $J_{C-P} = 215.5$ Hz), 61.0, 60.9 , 20.6, 16.7, 16.7, 15.0; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.13; **ESI-MS** (m/z) calculated for C₁₄H₂₁NO₃P (M+H)⁺ 282.1254, found: 282.1256.

IV. Gram-scale Synthesis, Synthetic Utility and mechanism Studies³⁻⁴

(1) Gram-scale synthesis of 3a and 4a

N-phenylbenzenecarboximidamide (**1a**, 1g), **2a**(7.7 mmol) [Cp*RhCl₂]₂ (0.41 mmol), AgNTf₂ (0.82 mmol), CsOAc (2.5 mol), AcOH (2 mL), were dissolved in DCE (40 mL) in a pressure tube. The mixture was stirred under N₂ atmosphere at 100°C for 14h. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography afford product **3a** as white solid (45%). *N*-phenylbenzenecarboximidamide (**1a**, 1 g), **2a** (7.7 mmol) [Ru(*p*-cymene)Cl₂]₂ (0.61 mmol), AgNTf₂ (0.82 mmol), CF₃COONa (2.5 mol), were dissolved in MeOH (40 mL) in a pressure tube. The mixture was stirred under N₂ atmosphere at 80°C for 14h. After that, the solvent was removed under (32%).

(2) Synthetic utility

Diethyl (3-methyl-1-(phenylamino)isoquinolin-4-yl) phosphonate (**3a**) were dissolved in condense HCl solution in a pressure tube. The mixture was stirred at r.t. for 24h. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography afford product **5** as yellow solid. (33% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.51 (s, 1H), 8.72 (d, *J* = 8.6 Hz, 1H), 8.55 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 4.12 – 3.89 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.7 (d, *J c*-*P* = 14.7 Hz), 154.5 (d, *J c*-*P* = 2.0 Hz), 140.7, 138.5 (d, *J c*-*P* = 12.8 Hz), 131.1, 128.8, 126.4 (d, *J c*-*P* = 2.5 Hz), 126.0, 123.8, 123.3, 122.0, 116.7 (d, *J c*-*P* = 10.2 Hz), 105.1 (d, *J c*-*P* = 188.1 Hz), 26.4; ³¹P NMR (162MHz, DMSO-*d*₆) δ 20.41; **FSI-MS** (*m*/*z*) calculated for C₁₆H₁₅N₂O₃P (M+H)⁺ 314.0820, found: 314.0818.

Diethyl (2-phenyl-1H-indol-3-yl)phosphonate (**4a**) (0.5 mmol) was treated with diphenylacetylene (0.5 mmol) in the presence of $[Cp*RhCl_2]_2$ (0.01 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.05 mmol), and AgOAc (0.5 mmol) Na₂CO₃ (1 mmol) in o-xylene(3 mL) at 100°C under N₂ for 6h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford **6** as

white solid. ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.44 (d, *J* = 8.2 Hz, 1H), 8.52 (d, *J* = 8.2 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* = 11.2, 5.9 Hz, 5H), 7.33 – 7.21 (m, 6H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.84 (t, *J* = 7.8 Hz, 1H), 5.91 (d, *J* = 8.7 Hz, 1H), 4.25 – 3.93 (m, 4H), 1.25 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 140.2, 139.9, 136.4, 136.1, 135.2, 132.9 (d, *J*_{C-P} = 13.6 Hz), 132.1 (d, *J*_{C-P} = 11.9 Hz), 131.9, 131.8, 131.2, 129.8, 129.7, 129.2, 128.5, 127.7, 127.4, 126.1, 124.4, 123.9, 123.4, 122.1, 121.7, 115.0, 95.2 (d, *J*_{C-P} = 238.6 Hz), 61.9, 61.8, 16.7, 16.6; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.51; **ESI-MS** (*m*/*z*) calculated for C₃₂H₂₈NO₃P (M+H)⁺ 505.5538, found: 505.5537.

Diethyl (2-phenyl-1H-indol-3-yl)phosphonate (**4a**) (0.5 mmol) was treated with hex-3-yne (0.5 mmol) in the presence of [Cp*RhCl₂]₂ (0.01 mmol), Cu(OAc)₂ H₂O (0.05 mmol), and AgOAc (0.5 mmol) Na₂CO₃ (1 mmol) in o-xylene(3 mL) at 100 °C under N₂ for 6h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford **7** as white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.23 (dd, *J* = 8.3, 0.9 Hz, 1H), 8.58 (d, *J* = 7.7 Hz, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.76 – 7.69 (m, 1H), 7.64 – 7.57 (m, 1H), 7.47 – 7.34 (m, 2H), 4.15 – 3.92 (m, 4H), 3.51 (q, *J* = 7.3 Hz, 2H), 3.04 (q, *J* = 7.4 Hz, 2H), 1.48 (t, *J* = 7.4 Hz, 3H), 1.26 (dd, *J* = 12.2, 4.8 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 140.52 (d, *J* _{C-P} = 23.9 Hz), 137.85, 132.93, 132.21 (dd, *J* _{C-P} = 12.9, 4.6 Hz), 130.19 (d, *J* _{C-P} = 3.7 Hz), 129.96, 129.75, 129.00, 126.19 (d, *J* _{C-P} = 17.5 Hz), 123.69, 123.46 (d, *J* _{C-P} = 16.5 Hz), 122.57, 122.17, 120.77, 115.99, 92.46 (d, *J* _{C-P} = 214.4 Hz), 61.73, 61.68, 22.90, 20.46, 16.55, 16.49, 15.11, 13.76 ; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 17.82 (s); **ESI-MS** (*m*/*z*) calcd for C₂₄H₂₉NO₃P (M+H)+ 410.1880, found: 410.1876.

(3) Mechanism studies

a) Synthesis of deuterated substrates:

N-phenylbenzimidamide (**1a**), *N*-phenylbenzimidamide-2,3,4,5,6- d_5 (D₅-**1a**) and *N*-(phenyl- d_5)benzimidamide (D₅-**1a**') and was synthesized according to the reported procedure. ^{1b} The structure of **1a**, D₅-**1a** and D₅-**1a**' was characterized by ¹H NMR analysis (see below).

N-phenylbenzimidamide (1a) ¹H NMR (400 MHz, DMSO- d_6) δ 7.98 (d, J = 6.9 Hz, 2H), 7.53 – 7.38 (m, 3H), 7.32 (t, J = 7.7 Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.87 (d, J = 4.9 Hz, 2H), 6.25 (s, 2H).

N-phenylbenzimidamide-2,3,4,5,6- d_5 (D₅-1a) ¹H NMR (400 MHz, DMSO- d_6) δ 7.41 – 7.14 (m, 2H), 6.99 (m, 1H), 6.88 (d, J = 6.2 Hz, 2H), 6.33 (s, 2H).

N-(phenyl-*d*₅)benzimidamide (D₅-1a') ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.94 (s, 2H), 7.62 – 7.03 (m, 3H), 6.52 (s, 2H).

b) H/D exchange experiments (with substrate 2)

A mixture of **1a** (0.5 mmol), **2** (0.75 mmol), and CD₃OOD (6 mL) were treated under standard conditions A for 14h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford white solid, which was characterized by ¹HNMR spectroscopy. ¹HNMR analysis of the coupled product **3a** revealed 63% deuteration at the ortho' position (8-position of the isoquinoline).

A mixture of **1a** (0.5 mmol), **2** (0.75 mmol), and MeOD (6 ml) were treated under standard conditions B for 14 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford white solid, which was characterized by ¹HNMR spectroscopy. ¹HNMR analysis of the coupled product **4a** revealed 42% deuteration at the ortho' position (7-position of the indole).

25

A mixture of **1a** (0.5 mmol), and CD₃OOD (2 mL) under standard conditions A for 1h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford white solid, which was characterized by ¹HNMR spectroscopy. ¹HNMR analysis revealed that of the coupled product **1a** revealed 62% deuteration at the ortho' position of C-phenyl ring.

A mixture of **1a** (0.5 mmol), and MeOD (6 mL) under standard conditions B for 1h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography afford white solid, which was characterized by 1HNMR spectroscopy. ¹HNMR analysis revealed that of the coupled product **1a** revealed 44% deuteration at the ortho' position of *N*-phenyl ring.

d) KIE experiment

A pressure tube was charged with [Cp*RhCl₂]₂ (8 mol %), AgNTf₂ (16 mol%), CsOAc (0.4 mmol), AcOH (0.4 mmol), **1a** (0.5 mmol), [D₅]-**1a** (0.5 mmol), **2a** (0.5 mmol) and DCE (6 mL). The reaction mixture was under N₂ atmosphere stirred at 100°C for 2h. After that, the solvent was removed under 26 reduced pressure and the residue was purified by silica gel chromatography to afford the product **3a** and $[D_4]$ -**3a**. The KIE value was determined to be $K_H/K_D = 1.5$ on the basis of ¹HNMR analysis.

A pressure tube was charged with $[Ru(p-cymene)Cl_2]_2$ (12 mol %), AgNTf₂ (16 mol%), CF₃COONa (0.4 mmol), **1** (0.5 mmol), $[D_5]$ -**1a'** (0.5 mmol), **2a** (0.5 mmol) and MeOH (6mL). The reaction mixture was under N₂ atmosphere stirred at 80 °C for 2h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography to afford the product **4a** and $[D_4]$ -**4a**. The KIE value was determined to be $K_H/K_D = 2.4$ on the basis of ¹HNMR analysis.

27

(e) Competition experiment

A pressure tube was charged with **1a** (each 0.2 mmol), **2** (0.3 mmol), $[Rh Cp*Cl_2]_2$ (8 mol%), AgNTf₂ (20 mol%), CsOAc (0.4 mmol), AcOH (0.4 mmol), DCE (2 mL), 100 °C, 14 h. The reaction mixture was under N₂ atmosphere stirred at 80^{\Box} for 14h. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography to afford product **3m** and **3k** as white solid. The ratio of **3m**: **3k** = 1.2:1 was determined on the basis of ¹H NMR analysis.

A pressure tube was charged with **1a** (each 0.2 mmol), **2a** (0.2 mmol), $[Ru(p-cymene)Cl_2]_2$ (12 mol%), AgNT f₂ (20 mmol%), CF₃COONa (0.4 mmol) and MeOH (6 mL). The reaction mixture was under N₂ atmosphere stirred at 80^{\Box} for 14h. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography to afford product **4d** and **4c** as white solid. The ratio of **4d**: **4c**= 1:4.9 was determined on the basis of ¹H NMR analysis

V. X-ray Crystallographic Data

(a) The Single Crystal Stucture of 3a

X-ray Single Crystal Stucture Analysis of 3a:

X-ray crystallographic data of **3a** were solutions at Temperature=173K, formula $C_{20}H_{23}N_2O_3P$, Formula weight=370.37, Crystal system: triclinic, Space group: P-1, a=9.115(3)Å, b=9.448(2)Å, c=11.944(3)Å, α =101.46(2)°, β =91.031(6)°, γ =106.620(7)°, Volume= 962.9(5)Å³, Z=2.

Figure 1: The crystal structure of **3a** by X-ray analysis.

These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via www.ccdc.cam.ac.uk/data_request/cif*, the CCDC_number is 1873308.

(b) The Single Crystal Stucture of 4a

X-ray Single Crystal Stucture Analysis of 4a:

X-ray crystallographic data of **4a** were solutions at Temperature=173K, formula $C_{18}H_{20}NO_3P$, Formula weight=329.32, Crystal system: monoclinic, Space group: Pc, a=7.6453(19)Å, b=11.642(3)Å, c=9.808(3) Å, α =90°, β =102.969(8)°, γ =90°, Volume= 850.7(4)Å³, Z=2.

Figure 2: The crystal structure of 4a by X-ray analysis.

These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif, the CCDC number is 1873345.

REFERENCE

1. (a) Cortes-Salva, M.; Garvin, C.; Antilla, J. C. J. Org. Chem. 2011, 76, 1456; (b) Velavan, A.; Sumathi, S.; Balasubramanian, K. K. Eur. J. Org Chem. 2014, 2014, 5806.

2. Meffre, P.; Hermann, S.; Durand, P.; Reginato, G.; Riu, A., Practical one-step synthesis of ethynylglycine synthon from Garner's aldehyde. *Tetrahedron* **2002**, *58* (25), 5159-5162.

3. Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M., Rhodium-catalyzed oxidative coupling/cyclization of 2-phenylindoles with alkynes via C-H and N-H bond cleavages with air as the oxidant. *Org. Lett.* **2010**, *12* (9), 2068-71.

4. Yuan, C.; Feng, H., Studies on Organophosphorus Compounds XL. An One-Pot Procedure for the Mono-O-Alkylation of Phosphonic Acid: A Facile Synthesis of Alkyl Hydrogen p-Substituted Phenylphosphonates. *Synthesis* **1990**, *1990* (02), 140-141.

VI.¹H, ³¹P and ¹³C NMR Spectra

158.50
158.36
154.18 \sim 140.13 \sim 138.55 \sim 138.55 131.155 131.155 123.16 \sim 123.61 \sim 123.75 \sim 116.69 \sim 114.72 ~106.72 ~104.85 40.63 40.63 140.21 139.79 139.37 26.33 61.52 61.47 <16.65 <16.69 Chemical Formula: C₂₀H₂₂BrN₂O₃P Molecular Weight: 449.28 <158.50 <158.36 -126.41 -126.13 -123.81 -123.81 -131.55 f1 (ppm) ò 90 80 f1 (ppm)

m/z= 380.	17-390.17			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
385.1673	385.1676	-0.77	10.5	С21 Н26 О3 N2 Р

油片

Fragmento 17	or Volt '5	tage		Collisi	on En	ergy		Ioniza	tion M ESI	lode											
x10 ⁶ +ESI Scan (rt: 0.5 min) Frag=175.0V ESIH_20180625_LH_CZQ_79.d																					
1-																					
0.9-								3	377.10	83											
0.8-																					
0.7-																					
0.6-																					
0.5-																					
0.4-																					
0.3-																					
0.2-																					
0.1-											379.1	089									
0-	372.0843																				
	369	370	371	372	373	374	4 375	376	377	378	379	380	381	382	383	384	385	386	387	388	389
								(Counts	s vs. M	Mass-t	o-Char	ge (m/z	:)							
ormula Calcu	lator	Resul	ts																		
ı/z	Cale	cm/z		Diff (ı	nDa)		Diff (pp	m)	Ion	on Formula			Ion								
377.108	3	37	7.1083)83 0.02 0.05 C							.8 H22 N2 O3 P S										

2台)-

ЗÉ

泊

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
344.1	419 344.141	-0.89	-2.58	C19 H23 N O3 P	(M+H)+

m/z Ca	alc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
398.1125	398.1127	0.21	0.53	C19 H20 F3 N O3 P	(M+H)+

Elemental composition search on mass 410.19

m/z = 405.	19-415.19			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
410.1876	410.1880	-0.82	11.5	С24 Н29 О3 N Р