Diastereoselective Rh-Catalyzed Decarboxylative Allylation to Form the Quaternary Stereocenters Using Sulfinimine as Chiral Directing Group

Shuanglin Qin, a, b, § Tongtong Liu, a, § Yunhao Luo, a, § Shende Jiang, b Guang Yang, a,*

¹ The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, People's Republic of China

² School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Contents of supporting information

1. General Information	S3
2. Preparation of compounds 1, S3-S26	S3
3. Decarboxylative Allylation of β-sulfinimine ester	S5
4. Application of Rh-catalyzed Decarboxylative Allylation in Forge Polycyclic Scaffolds	
	S15
5. Preparation of compound 27 and rac-27	S20
6. HPLC analysis for determination of the ee value of compound 27	
7. NMR Spectrums of Compounds	S24
8. Crystal data of Compound 29	S66

1. General Information

All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. The used solvents were purified and dried according to common procedures. Other chemicals and solvents were commercially available. High-resolution mass spectra (HRMS) were obtained with a FTICR-MS (Ion spec 7.0T) spectrometer. ¹H NMR spectra were obtained by using a Bruker AV 400 or AV 600. Chemical shifts are reported in parts per million (ppm) relative to either a tetramethylsilane internal standard or solvent signals. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants and integration. ¹³C NMR spectra were recorded using a Bruker AV 400 spectrometer (100 MHz) using CDCl₃ as the solvent. Chemical shifts (δ) are reported in parts per million measured relative to the solvent peak. Melting points (m.p.) were obtained on a Mel-Temp capillary melting point apparatus. Enantiomeric excess(ee) was determined using Agilent HPLC 1260. IR spectra were recorded with a Bio-Rad FTS 6000 Fourier infrared spectrometer.

2. Preparation of compounds 1, S2-S25

The synthesis of Sulfinimines **1**, **S3-S26**, as the starting marterials of **2a**, **3-26**, was based on the reported procedure.^[1] Only the corresponding analysis date of **S11**, **S24**, **S25** and **S26**, which were not reported before, were presentted in this supporting information.

Allyl-(*S*, *E*)-2-(((*R*)-*tert*-butylsulfinyl) imino)-1-(3-methylbut-2-en-1-yl) cyclohexane-1-carboxylate **S11**: $[\alpha]_D^{23}$ = - 117.60 (c 0.84, CHCl₃) .IR (KBr) v_{max} : 2930, 2866, 1734, 1629, 1511, 1452, 1213, 1179, 1081, 987 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 16.5, 10.6, 5.3 Hz, 1H), 5.31 (d, *J* = 16.8 Hz, 1H), 5.23 (d, *J* = 10.5 Hz, 1H), 5.08 (d, *J* = 7.8 Hz, 1H), 4.58 (t, *J* = 5.1 Hz, 2H), 3.66 – 3.55 (m, 1H), 2.62 (dd, *J* = 14.4, 7.3 Hz, 1H), 2.38 (m, 3H), 1.95 – 1.77 (m, 2H), 1.74 – 1.62 (m, 6H), 1.46 (m, 3H), 1.27 (s, 9H).¹³C NMR (400 MHz, CDCl₃) δ 184.1, 172.3, 134.8, 131.8, 119.0, 65.9, 59.6, 58.0, 35.6, 34.5, 32.3, 27.4, 26.2, 22.8, 22.4, 18.1. HRMS (ESI) calculated for C₁₉H₃₁NNaO₃S⁺[M+Na]⁺: 376.1917, found 376.1915.

Allyl-(*S*,*E*)-2-(((*R*)-*tert*-butylsulfinyl)imino)-1-(3-methylbut-2-en-1-yl)cyclooctane-1carboxylate **S24**: $[\alpha]_D^{26}$ = - 252.88 (c 2.9, CHCl₃) . IR (KBr) ν_{max} : 2961, 2927, 2858, 1734, 1649, 1617, 1466, 1260, 1190, 1081, 1019, 801 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.91 – 5.73 (m, 1H), 5.23 (dd, *J* = 29.6, 13.7 Hz, 2H), 4.99 (s, 1H), 4.52 (dd, *J* = 33.4, 12.8 Hz, 2H), 3.37 (d, *J* = 9.7 Hz, 1H), 2.77 (d, *J* = 14.4 Hz, 1H), 2.43 – 2.16 (m, 3H), 2.09 – 1.91 (m, 2H), 1.81 – 1.62 (m, 6H), 1.58 (s, 3H), 1.49 (d, *J* = 5.1 Hz, 2H), 1.30 (s, 9H), 1.24 (s, 1H), 1.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 172.5, 134.6, 131.8, 119.4, 119.0, 66.0, 61.7, 58.5, 31.2, 30.6, 27.2, 27.2, 26.1, 25.3, 25.2, 23.3, 23.1, 18.1. HRMS (ESI) calculated for C₂₁H₃₅NNaO₃S⁺ [M+Na]⁺:404.2230, found 404.2233.

Allyl-(*S*,*E*)-1-benzyl-2-(((*R*)-*tert*-butylsulfinyl)imino)cyclododecane-1-carboxylate **S25**: [α]_D²⁰= - 98.11 (c 0.4, CHCl₃). IR (KBr) v_{max} : 2960, 2926, 2858, 1738, 1619, 1465, 1452, 1360, 1261, 1173, 1089, 1078, 1017, 802, 701 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 - 7.19 (m, 3H), 7.11 - 6.99 (m, 2H), 5.89 (ddt, *J* = 16.6, 10.4, 5.9 Hz, 1H), 5.39 - 5.24 (m, 2H), 4.67 - 4.52 (m, 2H), 3.34 - 3.21 (m, 2H), 3.10 (d, *J* = 14.0 Hz, 1H), 2.17 (dt, *J* = 13.8, 5.8 Hz, 1H), 2.08 - 1.82 (m, 3H), 1.71 (td, *J* = 13.9, 5.1 Hz, 3H), 1.57 - 1.39 (m, 12H), 1.34 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 183.4, 172.5, 137.4, 131.5, 129.9, 128.5, 126.9, 119.5, 66.1, 64.7, 58.5, 38.9, 31.2, 29.5, 26.8, 26.0, 25.2, 25.0, 24.1, 24.0, 23.6, 23.1, 20.8. HRMS (ESI) calculated for C₂₇H₄₁NNaO₃S⁺[M+Na]⁺: 482.2699, found 482.2693.

Allyl-(*S*,*E*)-2-(((*R*)-*tert*-butylsulfinyl)-imino)-1-(3-methylbenzyl)-cyclododecane-1-carboxylate **S26**: $[\alpha]_{D^{20}} = -234.49$ (c 0.8, CHCl₃). IR (KBr) v_{max} :2930, 2863, 1737, 1620, 1453, 1393, 1261, 1231, 1195, 1175, 1143, 1081, 1037, 991, 931, 801, 703 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 4.7 Hz, 2H), 5.90 (ddt, *J* = 16.6, 11.2, 6.0 Hz, 1H), 5.31 (dd, *J* = 34.1, 13.8 Hz, 2H), 4.64 – 4.53 (m, 2H), 3.35 – 3.24 (m, 1H), 3.23 – 3.03 (m, 2H), 2.29 (s, 3H), 2.16 (dt, *J* = 13.0, 5.7 Hz, 1H), 2.05 – 1.89 (m, 2H), 1.72 (td, *J* = 14.4, 4.1 Hz, 2H), 1.62 – 1.34 (m, 14H), 1.33 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 183.3, 172.4, 137.7, 137.1, 131.4, 130.5, 128.1, 127.5, 126.7, 119.3, 65.9, 64.5, 58.3, 38.6, 31.0, 29.3, 26.6, 25.8, 24.9, 24.8, 23.9, 23.8, 23.4, 22.9, 21.4, 20.6. HRMS (ESI) calculated for C₂₈H₄₃NNaO₃S⁺ [M+Na]⁺: 496.2856, found 496.2852.

3. Decarboxylative Allylation of β-sulfinimine ester

Representative Procedure:

In a round bottom flask, a solution of compound 1 (0.5 g, 1.36 mmol) in fresh distillated THF (13 mL) was added NaHMDS (0.75 mL, 2M in THF) and RhCl(PPh₃)₃ (0.06 g, 0.06 mmol) in a nitrogen atmosphere at room temperature. The mixture was kept stirring at room temperature 1.5 hours. After the substrate was completely consumed (monitored by TLC analysis), the reaction mixture was quenched with saturated NH₄Cl (50 mL), and extracted by ethyl acetate (3 x 50 mL). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate=5:1) to furnish the desired compound **2a** (379 mg, 88% yield) as a colorless oil: $[\alpha]_D^{22}$ = - 92.56 (c 0.14, CHCl₃). IR (KBr) v_{max}: 2959, 2924, 2854, 1633, 1456, 1261, 1088, 1022, 802, 702 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.17 (m, 3H), 7.16 – 7.04 (m, 2H), 5.83 – 5.72 (m, 1H), 5.14 – 5.03 (m, 2H), 2.97 - 2.83 (m, 2H), 2.70 (d, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.22 (dd, J = 13.2 Hz, 1H), 2.49 - 2.32 (m, 2H), 2.49 - 2.32 (m, 2H), 2.22 (m, 2H), 2.213.8, 8.2 Hz, 1H), 1.78 – 1.64 (m, 3H), 1.39 – 1.32 (m, 1H), 1.29 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 197.1, 138.3, 134.3, 130.5, 128.2, 126.6, 118.7, 57.0, 54.7, 43.7, 43.3, 34.5, 31.7, 22.6, 21.7. HRMS (ESI) calculated for: C19H27NNaOS+ [M+Na]+: 340.1706, found 340.1705.

(*R*)-N-((*S*,*E*)-2-allyl-2-(4-(trifluoromethyl)benzyl)cyclopentylidene)-2-methylpropane-2-sulfinamide **3**: Prepared by using the representative procedure above from compound **S3** (0.10 g, 0.23 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **3** (73 mg, 82% yield) as a pale yellow oil: $[\alpha]_D^{22}$ - 71.69 (c 0.2, CHCl₃). IR (KBr) *v*_{max}: 2960, 2925, 2855, 1634, 1457, 1417, 1325, 1261, 1165, 1126, 1108, 1084, 1020, 855, 802 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.83 – 5.72 (m, 1H), 5.17 – 5.06 (m, 2H), 3.05 – 2.91 (m, 2H), 2.78 (d, *J* = 13.2 Hz, 1H), 2.45 (ddd, *J* = 19.6, 8.7, 5.1 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.21 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.81 – 1.64 (m, 3H), 1.45 – 1.37 (m, 1H), 1.27 (s, 9H).¹³C NMR (400 MHz, CDCl₃) δ 196.0, 142.4, 133.8, 130.8, 125.1, 119.0, 57.1, 54.6, 43.0, 34.2, 31.8, 22.6, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. HRMS (ESI) calculated for C₂₀H₂₆F₃NNaOS⁺ [M+Na]⁺: 408.1579, found 408.1577.

(*R*)-N-((*S*,*E*)-2-allyl-2-(4-nitrobenzyl)cyclopentylidene)-2-methylpropane-2-sulfinamide **4**: Prepared by using the representative procedure above from compound **S4** (0.10 g, 0.25 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **4** (71 mg, 78% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = -31.48 (c 0.5, CHCl₃) . IR (KBr) v_{max} : 2961, 2925, 2856, 1635, 1602, 1520, 1491, 1457, 1346, 1261, 1081, 1019, 867, 855, 804, 705 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.7 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 5.83 – 5.72 (m, 1H), 5.18 – 5.08 (m, 2H), 3.06 – 2.94 (m, 2H), 2.84 (d, *J* = 13.1 Hz, 1H), 2.45 (ddd, *J* = 14.0, 8.8, 5.6 Hz, 1H), 2.33 (dd, *J* = 13.9, 6.5 Hz, 1H), 2.21 (dd, *J* = 13.9, 8.0 Hz, 1H), 1.82 – 1.70 (m, 2H), 1.69 – 1.61 (m, 1H), 1.45 (m, 1H), 1.28 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 195.4, 146.9, 146.3, 133.5, 131.4, 123.4, 119.4, 57.2, 54.7, 43.0, 42.9, 34.0, 31.9, 22.7, 21.6. HRMS (ESI) calculated for C₁₉H₂₆N₂NaO₃S⁺ [M+Na]⁺: 385.1556, found 385.1557.

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-chlorobenzyl)cyclopentylidene)-2-methylpropane-2-sulfinamide **5**: Prepared by using the representative procedure above from compound **S5** (0.10 g, 0.25 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **5** (69 mg, 78% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 105.28 (c 0.3, CHCl₃). IR (KBr) v_{max}: 2958, 2925, 2857, 1633, 1597, 1572, 1472, 1454, 1361, 1261, 1165, 1081, 1019, 802, 714 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.18 (dd, *J* = 4.7, 1.2 Hz, 2H), 7.10 (s, 1H), 7.01 – 6.95 (m, 1H), 5.82 – 5.71 (m, 1H), 5.11 (t, *J* = 12.5 Hz, 2H), 3.01 – 2.85 (m, 2H), 2.69 (d, *J* = 13.3 Hz, 1H), 2.51 – 2.39 (m, 1H), 2.33 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.20 (dd, *J* = 13.9, 8.1 Hz, 1H), 1.79 – 1.65 (m, 3H), 1.44 (m, 1H), 1.28 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 196.4, 140.3, 134.0, 130.7, 129.5, 128.7, 126.8, 119.0, 57.0, 54.6, 43.0, 42.9, 34.3, 31.8, 22.6, 21.6. HRMS (ESI) calculated for C₁₉H₂₆CINNaOS⁺ [M+Na]⁺: 374.1316, found 374.1313.

(*R*)-N-((*S*,*E*)-2-allyl-2-(naphthalen-2-ylmethyl)cyclopentylidene)-2-methylpropane-2sulfinamide **6**: Prepared by using the representative procedure above from compound **S6** (0.10 g, 0.24 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **6** (75 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 39.12 (c 0.2, CHCl₃) . IR (KBr) *v*_{max}: 2960, 2924, 2854, 1632, 1458, 1261, 1085, 1021, 858, 802, 752 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.81 – 7.72 (m, 3H), 7.57 (s, 1H), 7.45 (ddd, *J* = 6.9, 4.3, 1.8 Hz, 2H), 7.23 (d, *J* = 1.7 Hz, 1H), 5.81 (td, *J* = 16.8, 7.9 Hz, 1H), 5.11 (dd, *J* = 13.5, 11.3 Hz, 2H), 3.11 (d, *J* = 13.2 Hz, 1H), 2.97 – 2.86 (m, 2H), 2.48 – 2.38 (m, 2H), 2.26 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.81 – 1.68 (m, 3H), 1.40 – 1.35 (m, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 135.9, 134.3, 133.4, 132.3, 129.1, 129.0, 127.7, 127.7, 126.1, 125.6, 118.8, 100.1, 57.0, 55.0, 43.7, 43.3, 34.4, 31.7, 22.7, 21.7. HRMS (ESI) calculated for C₂₃H₂₉NNaOS⁺ [M+Na]⁺: 390.1862, found 390.1858.

(*R*)-N-((*S*,*E*)-2-allyl-2-butylcyclopentylidene)-2-methylpropane-2-sulfinamide **7**: Prepared by using the representative procedure above from compound **S7** (0.10 g, 0.31 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **7** (76 mg, 87% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 132.18 (c 0.8, CHCl₃). IR (KBr) *v*max: 2957, 2928, 2860, 1633, 1457, 1410, 1361, 1261, 1172, 1082, 914, 802, 761, 697 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.81 – 5.68 (m, 1H), 5.04 (dd, *J* = 13.6, 1.7 Hz, 2H), 3.03 – 2.91 (m, 1H), 2.63 – 2.53 (m, 1H), 2.22 (d, *J* = 7.4 Hz, 2H), 1.86 – 1.62 (m, 5H), 1.46 (m, 2H), 1.40 – 1.34 (m, 1H), 1.24 (s, 9H), 1.21 – 1.07 (m, 2H), 0.87 (t, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 197.8, 134.6, 118.0, 56.7, 53.2, 42.1, 36.9, 34.1, 33.1, 26.5, 23.5, 22.5, 21.6, 14.2. HRMS (ESI) calculated for C₁₆H₂₉NNaOS⁺ [M+Na]⁺: 306.1862, found 306.1861.

8

(R)-N-((S,E)-2-allyl-2-(but-2-yn-1-yl)cyclopentylidene)-2-methylpropane-2-sulfinamide 8:

Prepared by using the representative procedure above from compound **S8** (0.10 g, 0.31 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **8** (74 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 19.34 (c 0.1, CHCl₃) . IR (KBr) v_{max} : 2960, 2924, 2857, 1634, 1457, 1261, 1085, 1020, 803 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.73 (dt, *J* = 16.3, 7.5 Hz, 1H), 5.13 – 5.03 (m, 2H), 2.97 (dt, *J* = 14.3, 8.5 Hz, 1H), 2.60 – 2.52 (m, 1H), 2.35 (dd, *J* = 16.4, 2.4 Hz, 1H), 2.30 – 2.27 (m, 2H), 1.91 – 1.80 (m, 3H), 1.75 (t, *J* = 2.4 Hz, 3H), 1.39 – 1.27 (m, 2H), 1.26 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 196.3, 133.8, 118.8, 77.6, 76.2, 56.9, 53.0, 41.9, 34.5, 32.5, 27.6, 22.4, 21.7, 3.6. HRMS (ESI) calculated for C₁₆H₂₅NNaOS⁺ [M+Na]⁺: 302.1549, found 302.1543.

(*R*)-N-((*S*,*E*)-2-allyl-2-(2-methylallyl)cyclopentylidene)-2-methylpropane-2-sulfinamide **9**: Prepared by using the representative procedure above from compound **S9** (0.10 g, 0.31 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **9** (79 mg, 90% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 261.42 (c 0.2, CHCl₃) . IR (KBr) v_{max}: 2959, 2925, 2854, 1635, 1559, 1507, 1457, 1361, 1262, 1084, 915, 812 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.75 (ddd, *J* = 17.0, 10.3, 7.3 Hz, 1H), 5.07 (dd, *J* = 13.3, 6.6 Hz, 2H), 4.82 (s, 1H), 4.69 (s, 1H), 3.01 (dt, *J* = 19.8, 7.5 Hz, 1H), 2.59 (m, 1H), 2.37 (d, *J* = 13.4 Hz, 1H), 2.30 – 2.15 (m, 3H), 1.85 – 1.71 (m, 4H), 1.66 (s, 3H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 142.9, 134.3, 118.6, 115.4, 56.8, 53.6, 45.5, 43.6, 34.0, 32.0, 24.8, 22.6, 21.7. HRMS (ESI) calculated for C₁₆H₂₇NNaOS⁺[M+Na]⁺: 304.1706, found 304.1702.

10

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-methylbut-2-en-1-yl)cyclopentylidene)-2-methylpropane-2sulfinamide **10**: Prepared by using the representative procedure above from compound **S10** (0.10 g, 0.29 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **10** (70 mg, 82% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = -110.48 (c 0.3, CHCl₃) . IR (KBr) *v*_{max}: 2959, 2925, 2856, 1635, 1457, 1261, 1085, 1019, 805 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.80 – 5.69 (m, 1H), 5.14 – 4.98 (m, 3H), 2.94 (dt, *J* = 15.7, 8.1 Hz, 1H), 2.62 – 2.53 (m, 1H), 2.24 (ddd, *J* = 24.7, 16.3, 7.2 Hz, 4H), 1.86 – 1.70 (m, 3H), 1.69 (s, 3H), 1.68 – 1.63 (m, 1H), 1.58 (s, 3H), 1.25 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 197.4, 134.6, 134.3, 119.9, 118.2, 56.8, 54.0, 42.3, 35.8, 34.3, 32.4, 26.2, 22.5, 21.8, 18.2. HRMS (ESI) calculated for C₁₇H₂₉NNaOS⁺ [M+Na]⁺: 318.1862, found 318.1859.

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-methylbut-2-en-1-yl)cyclohexylidene)-2-methylpropane-2sulfinamide **11**: Prepared by using the representative procedure above from compound **S11** (0.10 g, 0.28 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **11** (69 mg, 80% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = -45.66 (c 0.27, CHCl₃) . IR (KBr) *v*_{max}: 2958, 2925, 2855, 1618, 1454, 1378, 1361, 1261, 1080, 1021, 803 cm⁻¹.¹H NMR (400 MHz, CHCl₃) δ 5.72 (dt, *J* = 16.2, 7.5 Hz, 1H), 5.11 – 4.98 (m, 3H), 2.98 – 2.80 (m, 2H), 2.44 (dd, *J* = 14.8, 7.1 Hz, 1H), 2.33 (d, *J* = 7.1 Hz, 2H), 2.16 (dd, *J* = 14.9, 7.6 Hz, 1H), 1.80 – 1.65 (m, 9H), 1.60 (s, 3H), 1.25 (s, 9H).¹³C NMR (100 MHz, CHCl3) δ 191.2 , 134.8 , 134.1 , 119.6 , 117.6 , 56.5 , 49.8 , 40.3 , 36.7 , 34.8 , 31.4 , 27.2 , 26.2 , 22.5 , 20.9 , 18.2 .HRMS (ESI) calculated for C₁₈H₃₁NNaOS⁺ [M+Na]⁺: 332.2019, found 332.2017.

12

(*R*)-N-((*S*,*E*)-2-allyl-2-benzylcycloheptylidene)-2-methylpropane-2-sulfinamide **12** : Prepared by using the representative procedure above from compound **S12** (0.10 g, 0.26 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **12** (77 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 14.60 (c 0.8, CHCl₃) . IR (KBr) v_{max}: 2958, 2927, 2857, 1606, 1493, 1474, 1452, 1359, 1070, 912, 794, 708, 622 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.17 (m, 3H), 7.03 (d, *J* = 7.5 Hz, 2H), 5.92 (td, *J* = 17.0, 7.6 Hz, 1H), 5.07 (m, 2H), 2.95 – 2.75 (m, 3H), 2.62 – 2.17 (m, 3H), 1.66 (m, 5H), 1.43 – 1.27 (m, 3H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 137.9, 135.1, 130.6, 128.1, 126.5, 118.4, 56.6, 53.6, 44.7, 41.3, 34.3, 33.3, 30.2, 28.0, 23.9, 22.6. HRMS (ESI) calculated for C₂₁H₃₁NNaOS⁺ [M+Na]⁺: 368.2019, found 368.2015.

(*R*)-N-((*S*,*E*)-2-allyl-2-(4-nitrobenzyl)cycloheptylidene)-2-methylpropane-2-sulfinamide **13**: Prepared by using the representative procedure above from compound **S13** (0.10 g, 0.23 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **13** (76 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 45.65 (c 0.45, CHCl₃). IR (KBr) *v*_{max}: 2926, 2857, 1637, 1601, 1495, 1454, 1387, 1360, 1261, 1074, 913, 805, 702 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 5.88 (dq, *J* = 10.1, 7.3 Hz, 1H), 5.15 (dd, *J* = 20.6, 13.5 Hz, 2H), 2.98 – 2.83 (m, 3H), 2.69 – 2.61 (m, 1H), 2.31 (m, 2H), 1.90 – 1.66 (m, 4H), 1.53 – 1.30 (m, 4H), 1.20 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 146.8, 146.2, 134.1, 131.5, 123.3, 119.2, 56.9, 53.6, 43.6, 41.2, 33.8, 33.6, 30.1, 27.8, 23.8, 22.7. HRMS (ESI) calculated for C₂₁H₃₀N₂NaO₃S⁺ [M+Na]⁺: 413.1869, found 413.1867.

(*R*)-N-((*S*,*E*)-2-allyl-2-(4-(trifluoromethyl)benzyl)cycloheptylidene)-2-methylpropane-2sulfinamide **14**: Prepared by using the representative procedure above from compound **S14** (0.10 g, 0.22 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **14** (78 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = -17.68 (c 0.46, CHCl₃) . IR (KBr) *v*_{max}: 2927, 2857, 1609, 1458, 1388, 1326, 1164, 1125, 1068, 1019, 916, 797 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 5.90 (dq, *J* = 10.0, 7.3 Hz, 1H), 5.22 – 5.02 (m, 2H), 2.87 (q, *J* = 13.6 Hz, 3H), 2.59 (dd, *J* = 15.8, 6.1 Hz, 1H), 2.32 (ddd, *J* = 32.7, 14.4, 7.2 Hz, 2H), 1.89 – 1.62 (m, 4H), 1.57 – 1.23 (m, 4H), 1.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 142.2, 134.5, 130.9, 125.0, 125.0, 118.9, 56.7, 53.5, 44.0, 41.0, 34.1, 33.6, 30.2, 27.9, 23.8, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. HRMS (ESI) calculated for C₂₂H₃₀F₃NNaOS⁺ [M+Na]⁺: 436.1892, found 436.1893.

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-methylbenzyl)cycloheptylidene)-2-methylpropane-2-sulfinamide **15**: Prepared by using the representative procedure above from compound **S15** (0.10 g, 0.25 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **15** (81 mg, 90% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 11.34 (c 0.5, CHCl₃). IR (KBr) *v*_{max}: 2925, 2855, 1736, 1606, 1456, 1360, 1260, 1176, 1077, 913, 801, 742, 700, 585 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.83 (s, 2H), 5.92 (td, *J* = 17.1, 7.4 Hz, 1H), 5.11 (t, *J* = 12.8 Hz, 2H), 2.96 – 2.84 (m, 1H), 2.77 (q, *J* = 13.5 Hz, 2H), 2.40 (ddd, *J* = 27.1, 22.1, 9.4 Hz, 3H), 2.30 (s, 3H), 1.82 – 1.57 (m, 6H), 1.41 (m, 2H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CHCl₃) δ 194.2, 137.8, 137.6, 135.2, 131.5, 128.0, 127.6, 127.2, 118.4, 56.6, 53.5, 44.7, 41.3, 34.4, 33.4, 30.2, 28.0, 23.9, 22.6, 21.6. HRMS (ESI) calculated for C₂₂H₃₃NNaOS⁺[M+Na]⁺: 382.2175, found 382.2173.

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-chlorobenzyl)cycloheptylidene)-2-methylpropane-2-sulfinamide **16**: Prepared by using the representative procedure above from compound **S16** (0.10 g, 0.24 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **16** (82 mg, 90% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 12.93 (c 0.5, CHCl₃). IR (KBr) *v*_{max}: 2926, 2859, 1608, 1458, 1388, 1327, 1163, 1125, 1068, 1019, 910, 801 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 4.8 Hz, 2H), 7.02 (s, 1H), 6.97 – 6.86 (m, 1H), 5.88 (td, *J* = 17.3, 7.4 Hz, 1H), 5.12 (t, *J* = 14.1 Hz, 2H), 2.87 (dd, *J* = 15.0, 5.7 Hz, 1H), 2.78 (dd, *J* = 28.9, 13.6 Hz, 2H), 2.57 (dd, *J* = 15.8, 6.0 Hz, 1H), 2.32 (qd, *J* = 14.4, 7.4 Hz, 2H), 1.73 (m, 5H), 1.46 (m, 3H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 140.0, 134.7, 133.9, 130.7, 129.3, 128.8, 126.7, 118.7, 56.7, 53.5, 43.9, 41.2, 34.1, 33.5, 30.2, 27.9, 23.8, 22.6. HRMS (ESI) calculated for C₂₁H₃₀CINNaOS⁺ [M+Na]⁺: 402.1629, found 402.1626.

(*R*)-N-((*S*,*E*)-2-allyl-2-(2-methylallyl)cycloheptylidene)-2-methylpropane-2-sulfinamide **17**: Prepared by using the representative procedure above from compound **S17** (0.10 g, 0.28 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **17** (82 mg, 91% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 48.35 (c 0.2, CHCl₃). IR (KBr) v_{max} : 2925, 2855, 1608, 1457, 1360, 1261, 1182, 1150, 1079, 1020, 913, 894, 801, 590 cm^{-1.1}H NMR (400 MHz, CHCl₃) δ 5.83 (ddt, *J* = 17.4, 10.3, 7.4 Hz, 1H), 5.11 – 5.00 (m, 2H), 4.89 – 4.82 (m, 1H), 4.70 – 4.62 (m, 1H), 3.02 (ddd, *J* = 11.0, 7.9, 2.3 Hz, 1H), 2.66 (td, *J* = 11.4, 2.8 Hz, 1H), 2.49 (dd, *J* = 14.4, 7.1 Hz, 1H), 2.32 (dd, *J* = 14.4, 7.7 Hz, 1H), 2.23 (s, 2H), 1.94 – 1.72 (m, 3H), 1.66 (s, 3H), 1.62 – 1.30 (m, 5H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CHCl₃) δ 193.9, 142.2, 135.3, 118.2, 115.6, 56.7, 52.9, 46.8, 41.2, 34.4, 34.2, 30.3, 28.5, 25.1, 23.9, 22.7. HRMS (ESI) calculated for C₁₈H₃₁NNaOS⁺ [M+Na]⁺: 332.2019, found 332.2017.

(R)-N-((S,E)-2-allyl-2-(3-methylbut-2-en-1-yl)cycloheptylidene)-2-methylpropane-2sulfinamide **18**: Prepared by using the representative procedure above from compound **S18** (0.10 g, 0.27 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **18** (81 mg, 92% yield) as a pale yellow oil: $[α]_D^{22}$ - 18.28 (c 0.9, CHCl₃) . IR (KBr) *v*_{max}: 2926, 2858, 1658, 1640, 1608, 1546, 1510, 1455, 1361, 1077, 910 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.82 – 5.71 (m, 1H), 5.09 – 5.01 (m, 3H), 2.93 – 2.73 (m, 2H), 2.45 (dd, *J* = 14.2, 6.9 Hz, 1H), 2.22 (dd, *J* = 14.3, 8.0 Hz, 2H), 2.10 (dd, *J* = 14.8, 7.8 Hz, 1H), 1.86 – 1.70 (m, 3H), 1.68 (s, 3H), 1.63 – 1.60 (m, 1H), 1.59 (s, 3H), 1.53 – 1.34 (m, 4H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 135.1, 134.1, 119.8, 118.0, 56.5, 53.1, 40.5, 35.8, 34.4, 33.1, 30.4, 27.8, 26.2, 23.9, 22.6, 18.1. HRMS (ESI) calculated for C₁₉H₃₃NNaOS⁺ [M+Na]⁺: 346.2175, found 346.2173.

(*R*,*E*)-N-(2,2-diallylcycloheptylidene)-2-methylpropane-2-sulfinamide **19**:

Prepared by using the representative procedure above from compound **S19** (0.10 g, 0.29 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **19** (77 mg, 89% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 67.10 (c 0.35, CHCl₃) . IR (KBr) *v*_{max}: 2977, 2926, 2858, 1638, 1610, 1445, 1360, 1183, 1077, 995, 913 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 5.82 – 5.68 (m, 2H), 5.08 – 4.98 (m, 4H), 2.93 (ddd, *J* = 12.1, 8.4, 3.9 Hz, 1H), 2.80 (ddd, *J* = 12.0, 8.1, 3.8 Hz, 1H), 2.43 (dd, *J* = 14.3, 7.0 Hz, 1H), 2.26 (dtd, *J* = 21.5, 14.2, 6.9 Hz, 3H), 1.81 – 1.71 (m, 2H), 1.67 – 1.62 (m, 2H), 1.55 (dd, *J* = 11.7, 5.9 Hz, 2H), 1.43 (dt, *J* = 10.6, 5.4 Hz, 2H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 134.6, 134.6, 118.2, 118.0, 56.7, 52.5, 41.7, 41.2, 34.4, 32.7, 30.3, 27.5, 23.9, 22.7. HRMS (ESI) calculated for C₁₇H₂₉NNaOS⁺ [M+Na]⁺: 318.1862, found 318.1861.

(*R*)-N-((*S*,*E*)-2-allyl-2-butylcycloheptylidene)-2-methylpropane-2-sulfinamide **20**: Prepared by using the representative procedure above from compound **S20** (0.10 g, 0.28 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **20** (87 mg, 95% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 29.55 (c 1.0, CHCl₃) . IR (KBr) v_{max} : 2955, 2928, 2856, 1607, 1469, 1396, 1361, 1261, 1167, 1077, 1019, 912, 801, 702 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.75 (td, *J* = 17.3, 7.4 Hz, 1H), 5.08 – 4.99 (m, 2H), 3.00 – 2.90 (m, 1H), 2.68 (t, *J* = 11.0 Hz, 1H), 2.53 (dd, *J* = 14.2, 6.9 Hz, 1H), 2.16 (dd, *J* = 14.2, 8.0 Hz, 1H), 1.91 – 1.83 (m, 1H), 1.79 – 1.64 (m, 3H), 1.58 – 1.28 (m, 7H), 1.25 (s, 9H), 1.21 – 1.04 (m, 3H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 135.3, 117.9, 56.6, 52.2, 39.7, 37.9, 35.2, 33.0, 30.4, 28.3, 26.1, 23.9, 23.4, 22.7, 14.2. HRMS (ESI) calculated for C₁₈H₃₃NNaOS⁺ [M+Na]⁺: 334.2175, found 334.2171.

(*R*)-N-((*R*,*E*)-2-allyl-2-isopentylcycloheptylidene)-2-methylpropane-2-sulfinamide **21** : Prepared by using the representative procedure above from compound **S21** (0.10 g, 0.27 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **21** (83 mg, 94% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 45.23 (c 0.05, CHCl₃) . IR (KBr) *v*_{max}: 2954, 2927, 2858, 1609, 1466, 1385, 1361, 1261, 1168, 1079, 1020, 912, 803, 703, 588 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.81 – 5.67 (m, 1H), 5.08 – 4.98 (m, 2H), 3.01 – 2.89 (m, 1H), 2.66 (t, *J* = 11.1 Hz, 1H), 2.51 (dd, *J* = 14.0, 6.4 Hz, 1H), 2.15 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.88 – 1.64 (m, 4H), 1.57 – 1.33 (m, 7H), 1.25 (s, 9H), 1.10 – 0.97 (m, 2H), 0.85 – 0.80 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 135.2, 117.9, 56.6, 52.1, 39.5, 35.9, 35.2, 33.0, 32.9, 30.4, 28.7, 28.3, 23.9, 22.8, 22.7. HRMS (ESI) calculated for C₁₉H₃₅NNaOS⁺ [M+Na]⁺: 348.2332, found 348.2330.

(*R*)-N-((*S*,*E*)-2-allyl-2-benzylcyclooctylidene)-2-methylpropane-2-sulfinamide **22** : Prepared by using the representative procedure above from compound **S22** (0.10 g, 0.25 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **22** (81 mg, 90% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 31.76 (c 0.2, CHCl₃) . IR (KBr) v_{max} : 2956, 2924, 2855, 1601, 1464, 1455, 1261, 1085, 1075, 1056, 795, 699 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.21 (dq, *J* = 14.3, 7.1 Hz, 3H), 7.05 (d, *J* = 7.2 Hz, 2H), 5.99 – 5.86 (m, 1H), 5.17 (m, 2H), 2.81 (d, *J* = 5.5 Hz, 2H), 2.70 – 2.62 (m, 1H), 2.40 (dd, *J* = 14.4, 7.0 Hz, 1H), 2.21 (dd, *J* = 15.1, 7.3 Hz, 1H), 2.09 – 1.83 (m, 3H), 1.76 – 1.41 (m, 7H), 1.33 – 1.27 (m, 1H), 1.12 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 193.8, 138.0, 134.7, 130.5, 128.2, 126.5, 118.5, 56.8, 53.1, 37.9, 32.4, 31.0, 30.7, 25.9, 25.1, 25.0, 22.7. HRMS (ESI) calculated for C₂₂H₃₃NNaOS⁺ [M+Na]⁺: 382.2175, found 382.2172.

(*R*)-N-((*S*,*E*)-2-allyl-2-butylcyclooctylidene)-2-methylpropane-2-sulfinamide **23**: Prepared by using the representative procedure above from compound **S23** (0.10 g, 0.27 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **23** (75 mg, 85% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 78.48 (c 2.0, CHCl₃) . IR (KBr) v_{max} : 2955, 2928, 2859, 1601, 1467, 1360, 1261, 1180, 1075, 913, 797 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.73 – 5.60 (m, 1H), 5.05 – 4.99 (m, 2H), 2.98 – 2.81 (m, 1H), 2.62 (ddd, *J* = 12.4, 8.5, 3.9 Hz, 1H), 2.42 (dd, *J* = 14.5, 7.0 Hz, 1H), 2.19 (dd, *J* = 14.5, 7.9 Hz, 1H),

2.04 – 1.93 (m, 2H), 1.73 (m, 2H), 1.39 (m, 9H), 1.25 (s, 9H), 1.20 – 0.96 (m, 3H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 134.7, 117.8, 56.9, 51.4, 38.1, 31.1, 30.8, 30.2, 25.9, 25.8, 24.8, 24.8, 23.4, 22.9, 22.4, 14.2. HRMS (ESI) calculated for C₁₉H₃₅NNaOS⁺ [M+Na]⁺: 348.2332, found 348.2331.

(*R*)-N-((*S*,*E*)-2-allyl-2-(3-methylbut-2-en-1-yl)cyclooctylidene)-2-methylpropane-2sulfinamide **24**: Prepared by using the representative procedure above from compound **S24** (0.10 g, 0.26 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **24** (81 mg, 92% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = -59.80 (c 0.9, CHCl₃) . IR (KBr) *v*_{max}: 2956, 2928, 2858, 1603, 1466, 1454, 1360, 1261, 1181, 1075, 912 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 5.75 – 5.65 (m, 1H), 5.03 (m, 3H), 2.90 (t, *J* = 11.3 Hz, 1H), 2.64 – 2.55 (m, 1H), 2.41 – 2.19 (m, 3H), 2.14 – 1.90 (m, 4H), 1.78 (d, *J* = 5.6 Hz, 2H), 1.67 (s, 3H), 1.58 (s, 3H), 1.52 – 1.32 (m, 5H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 134.6, 133.7, 119.9, 117.9, 56.8, 52.2, 39.0, 33.1, 31.0, 29.8, 26.3, 25.9, 25.0, 24.9, 22.8, 18.2. HRMS (ESI) calculated for C₂₀H₃₅NNaOS⁺[M+Na]⁺: 360.2332, found 360.2330.

(*R*)-N-((*S*,*E*)-2-allyl-2-benzylcyclododecylidene)-2-methylpropane-2-sulfinamide **25**: Prepared by using the representative procedure above from compound **S25** (0.10 g, 0.22 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **25** (81 mg, 89% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = - 82.33 (c 0.5, CHCl₃). IR (KBr) v_{max}: 2957, 2926, 2856, 1601, 1464, 1456, 1261, 1085, 1075, 1056, 799, 697 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (dd, *J* = 16.7, 7.1 Hz, 3H), 7.10 (d, *J* = 7.4 Hz, 2H), 5.90 – 5.79 (m, 1H), 5.18 – 5.09 (m, 2H), 2.88 (s, 3H), 2.58 (ddd, *J* = 14.1, 9.1, 5.6 Hz, 1H), 2.27 (tt, *J* = 15.0, 7.7 Hz, 2H), 2.04 – 1.98 (m, 1H), 1.84 – 1.76 (m, 1H), 1.55 – 1.31 (m, 16H), 1.16 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 138.5, 134.4, 130.5, 128.2, 126.4, 118.4, 56.8, 54.9, 40.1, 39.0, 34.8, 31.0, 27.7, 27.6, 26.5, 25.8, 25.2, 24.3, 23.5, 22.7, 22.5. HRMS (ESI) calculated for C₂₆H₄₁NNaOS⁺ [M+Na]⁺: 438.2801, found 438.2800.

Prepared by using the representative procedure above from compound **S26** (0.10 g, 0.21 mmol). Purified by columnchromatographyon silica gel (petroleum ether:ethyl acetate = 5:1) to afford **26** (75 mg, 83% yield) as a pale yellow oil: $[\alpha]_D^{22}$ = 96.24 (c 0.5, CHCl₃). IR (KBr) v_{max} : 2956, 2926, 2858, 1600, 1466, 1452, 1261, 1086, 1075, 1056, 798, 696 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 – 7.11 (m, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 7.2 Hz, 2H), 5.89 – 5.79 (m, 1H), 5.16 – 5.10 (m, 2H), 2.84 (s, 3H), 2.58 (ddd, *J* = 13.5, 9.2, 5.6 Hz, 1H), 2.36 – 2.32 (m, 1H), 2.30 (s, 3H), 2.27 – 2.21 (m, 1H), 2.05 – 1.96 (m, 1H), 1.80 (dt, *J* = 14.1, 6.6 Hz, 1H), 1.68 – 1.44 (m, 10H), 1.41 – 1.28 (m, 6H), 1.15 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.9, 138.4, 137.6, 134.5, 131.4, 128.1, 127.5, 127.1, 118.3, 56.7, 54.8, 40.1, 39.0, 34.8, 31.0, 27.7, 27.6, 26.6, 25.7, 25.1, 24.3, 23.5, 22.6, 22.5, 21.6. HRMS (ESI) calculated for C₂₇H₄₃NNaOS⁺ [M+Na]⁺: 452.2958, found 452.2955.

References:

[1] Qin, S. L.; Liu, S. W.; Cao, Y. T.; Li, J. N.; Chong, C. K.; Liu, T. T.; Luo, Y. H.; Hu, J. Y.; Jiang, S. D.; Zhou, H. G.; Yang, G.; Yang, C. *Org. Lett.* **2018**, *20*, 1350.

4. Application of Rh-catalyzed Decarboxylative Allylation in Forge Polycyclic

Scaffolds

(*R*)-N-((1*R*,2*S*)-2-allyl-2-benzylcyclopentyl)-2-methylpropane-2-sulfinamide **28**: In a round bottom flask, a solution of compound **2a** (0.2 g, 0.63 mmol) in THF : MeOH (10 : 1) (7 mL) was added NaBH₄ (0.05 g, 1.26 mmol) in a nitrogen atmosphere at 0 °C. The mixture was kept stirring at room temperature 0.5 hours. After the substrate was completely consumed (monitored by TLC analysis), the reaction mixture was quenched with saturated NH₄Cl (50 mL), and extracted by ethyl acetate (3 x 50 mL). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 2 : 1) to furnish the desired compound **28** (180 mg, 89% yield) as a colorless oil: $[\alpha]_D^{22}$ = - 132.61 (c 1.0, CHCl₃) . IR (KBr) *v*_{max}: 2957, 2925, 2854, 1600, 1571, 1458, 1363, 1261, 1057, 866, 800, 710, 687 cm^{-1.1}H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.21 (m, 1H), 7.15 – 7.11 (m, 2H), 5.94 (ddt, *J* = 12.1, 9.2, 7.3 Hz, 1H), 5.16 – 5.09 (m, 2H), 3.37 (dd, *J* = 18.9, 8.9 Hz, 1H), 3.09 (d, *J* = 10.4 Hz, 1H), 2.73 (d, *J* = 13.4 Hz, 1H), 2.63 (d, *J* = 13.4 Hz, 1H), 2.18 (ddd, *J* = 11.8, 8.6, 4.4 Hz, 1H), 2.08 (d, *J* = 7.3 Hz, 2H), 1.65 – 1.57 (m, 2H), 1.52 (m, 1H), 1.45 –

1.35 (m, 2H), 1.26 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 138.3, 135.9, 131.0, 128.1, 126.3, 117.7, 63.6, 56.2, 48.3, 41.9, 38.3, 32.9, 31.7, 23.1, 19.5. HRMS (ESI) calculated for C₁₉H₂₉NNaOS⁺ [M+Na]⁺: 342.1862, found 342.1863.

28a

(R)-N-allyl-N-((1R,2S)-2-allyl-2-benzylcyclopentyl)-2-methylpropane-2-sulfinamide 28a: In a round bottom flask, a solution of compound 28 (0.18 g, 0.56 mmol) in DMF (2 mL) at -20 °C was added LiHMDS (1.0 M in THF, 0.6 mL, 1.2 mmol) dropwise. The mixture was stirred at -20° C. for 20 min followed by addition of allyl bromide (0.19 mL, 2.24 mmol). After 0.5 h stirring at -20° C., the reaction was quenched with sat. NH₄Cl and warmed to rt. It was extracted with EtOAc (3 x 10 mL), the organic layer was washed with brine and dried over Na₂SO₄. After removal of solvent, the crude was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 4:1) to furnish the desired compound **28a** (152 mg, 75% yield) as a colorless oil: $[\alpha]_D^{22}$ = - 28.03 (c 1.4, CHCl₃). IR (KBr) v_{max}: 2958, 2926, 2873, 1637, 1454, 1070, 916, 704 cm⁻¹.¹H NMR (400 MHz, CHCl₃) δ 7.28 (t, J = 6.2 Hz, 2H), 7.25 – 7.15 (m, 3H), 5.97 (ddt, J = 16.8, 11.5, 6.4 Hz, 1H), 5.82 (dq, J = 17.0, 7.8 Hz, 1H), 5.20 (dd, J = 13.7, 9.0 Hz, 2H), 5.03 (dd, J = 24.4, 13.5 Hz, 2H), 3.96 (dd, J = 16.1, 6.1 Hz, 1H), 3.52 (dt, J = 15.8, 7.5 Hz, 2H), 2.86 – 2.70 (m, 2H), 2.17 (dq, J = 21.4, 7.1 Hz, 3H), 1.96 (dd, J = 14.5, 7.8 Hz, 1H), 1.85 (dq, J = 14.0, 4.6 Hz, 1H), 1.78 – 1.54 (m, 3H), 1.32 (s, 9H).¹³C NMR (100 MHz, CHCl₃) δ 139.4, 137.1, 135.1, 130.7, 128.0, 126.1, 118.2, 117.7, 68.8, 58.9, 49.6, 49.4, 40.3, 40.2, 33.7, 28.7, 24.9, 20.6 . HRMS (ESI) calculated for C₂₂H₃₃NNaOS⁺ [M+Na]⁺: 382.2175, found 382.2171.

(5aS,8aR)-5a-benzyl-1-((R)-tert-butylsulfinyl)-1,2,5,5a,6,7,8,8a-

octahydrocyclopenta[b]azepine **29** : To a solution of **28a** (0.15g, 0.42 mmol) in dichloromethane (10 mL) was added Grubb's second generation catalyst (15 mg, 0.13 mmol). The reaction mixture was stirred at room temperature for 7 h and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 4:1) to give the compound **29** as a white solid (137 mg, 99%). $[\alpha]_D^{22}$ = .84.79 (c 0.35, CHCl₃), m.p. = 103.6-104.4 °C. IR (KBr) v_{max} : 2962, 2924, 2855, 1632, 1453, 1261, 1092, 1024, 802, 703, 678, 595 cm⁻¹.¹H NMR (400 MHz, CHCl₃) δ 7.27 (d, *J* = 7.0 Hz, 2H), 7.17 (dd, *J* = 38.6, 7.8 Hz, 3H), 6.11 – 5.98 (m, 2H), 4.24 – 4.15 (m, 1H), 3.31 (dd, *J* = 11.3, 8.2 Hz, 1H), 2.93 (dd, *J* = 24.4, 14.3 Hz, 2H), 2.31 (q, *J* = 10.2, 9.4 Hz, 1H), 2.24 – 2.11 (m, 2H), 2.02 (dt, *J* = 12.6, 6.5 Hz, 1H), 1.88 (t, *J* = 14.9 Hz, 2H), 1.78 – 1.65 (m, 2H), 1.23 (s, 9H), 1.05 (d, *J* = 11.7 Hz, 1H). ¹³C NMR (100 MHz, CHCl₃) δ 139.3, 134.1, 130.5, 128.1, 127.9, 126.1, 79.0, 58.5, 47.9, 44.4, 36.7, 34.0, 33.3, 29.1,

24.0, 18.7. HRMS (ESI) calculated for C₂₀H₂₉NNaOS⁺ [M+Na]⁺: 354.1862, found 354.1860.

((5R,6S)-6-allyl-6-benzyl-3-methylene-1-azaspiro[4.4]nonan-1-yl)(tert-butyl)-l3-sulfanolate **31**: A Solution of **2a** (0.2 g, 0.63 mmol) in THF was charged to $Pd(PPh_3)_4$ (70 mg, 0.06 mmol), to which 2-(trimethylsilylMethyl) allyl acetate (0.27 mL, 1.26 mmol) was added and stirred overnight in a nitrogen atmosphere at 60 °C. After the substrate was completely consumed (monitored by TLC analysis), the solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether :ethyl acetate=4:1) to furnish the desired compound **31** (194 mg, 83% yield) as a colorless oil:¹H NMR indicated **31** is a mixture of two diastereoisomers in a ratio of 10:1. Major isomer: [α]_D²²= - 24.32 (c 0.89, CHCl₃). IR (KBr) *v*_{max}: 2959, 2924, 2855, 1628, 1494, 1455, 1377, 1361, 1261, 1085, 1021, 916, 888, 802, 744, 703 cm⁻¹. ¹H NMR (400 MHz, CHCl₃) δ 7.22 (dd, J = 18.6, 8.1 Hz, 3H), 7.12 (d, J = 7.1 Hz, 2H), 5.79 (td, J = 16.6, 9.0 Hz, 1H), 5.16 -5.06 (m, 2H), 4.72 (s, 1H), 4.61 (s, 1H), 3.15 – 3.04 (m, 1H), 2.92 (d, J = 12.8 Hz, 1H), 2.66 (d, J = 12.9 Hz, 1H), 2.54 (d, J = 13.1 Hz, 1H), 2.42 (d, J = 8.1 Hz, 1H), 2.25 (dd, J = 13.5, 10.1 Hz)8.7 Hz, 1H), 2.02 (t, J = 12.8 Hz, 1H), 1.79 – 1.67 (m, 5H), 1.62(s, 1H), 1.49 (dd, J = 12.7, 6.4 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CHCl₃) δ198.1, 143.6, 138.4, 134.7, 130.4, 128.3, 126.6, 118.7, 112.5, 57.4, 54.6, 45.5, 44.7, 43.5, 42.2, 28.5, 25.3, 23.1, 21.5 . HRMS (ESI) calculated for C₂₃H₃₃NNaOS⁺ [M+Na]⁺: 394.2175, found 394.2173.

(R)-N-((1S,2S)-1,2-diallyl-2-benzylcyclopentyl)-2-methylpropane-2-sulfinamide 32: In a round bottom flask, a solution of compound 2a (0.2 g, 0.63 mmol) in THF (10 mL) was added allyImagnesium chloride (2M in THF, 1.26 mL, 2.52 mmol) in a nitrogen atmosphere at 0 $^{\circ}$ C. The mixture was kept stirring at 0 $^{\circ}$ C 3.0 hours. After the substrate was completely consumed (monitored by TLC analysis), the reaction mixture was quenched with saturated NH₄Cl (50 mL), and extracted by ethyl acetate (3 x 50 mL). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 3 : 1) to furnish the desired compound **32** (170 mg, 75% yield) as a colorless oil: $[\alpha]_D^{22}$ = -46.05 (c 0.55, CHCl₃). IR (KBr) v_{max}: 2960, 2925, 2855, 1635, 1455, 1261, 1071, 1022, 912, 803, 703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (m, 2H), 7.23 (m, 1H), 7.16 (d, J = 7.4 Hz, 2H), 6.29 – 6.12 (m, 1H), 5.96 (td, J = 16.8, 7.3 Hz, 1H), 5.16 (dd, J = 18.9, 10.0 Hz, 4H), 3.53 (s, 1H), 2.94 (d, J = 13.5 Hz, 1H), 2.59 (d, J = 13.6 Hz, 1H), 2.50 - 2.39 (m, 2H), 2.18 (d, J = 7.1 Hz, 2H), 2.02 (t, J = 11.0 Hz, 1H), 1.80 – 1.68 (m, 2H), 1.36 (t, J = 11.8 Hz, 2H), 1.28 (s, 1H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 135.9, 135.0, 130.8, 128.3, 126.4, 118.6, 118.0, 70.6, 56.6, 53.6, 42.4, 39.1, 38.0, 33.5, 33.0, 23.2, 19.0. HRMS (ESI) calculated for C₂₂H₃₃NNaOS⁺ [M+Na]⁺: 382.2175, found 382.2177.

(*R*)-N-((*3aS*, *7aS*)-7a-benzyl-1,2,3,4,7,7a-hexahydro-3aH-inden-3a-yl)-2-methylpropane-2-sulfinamide **33**: To a solution of **32** (0.17 g, 0.47 mmol) in dichloromethane (10 mL) was added Grubb's second generation catalyst (120 mg, 0.14 mmol). The reaction mixture was stirred at room temperature for 2 h and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc : PE = 1 : 4) to give the compound **33** as a colorless oil (140 mg, 90%). [α] $_{D^{22}}$ = 4.61 (c 0.72, CHCl₃). IR (KBr) v_{max} : 2959, 2925, 2869, 1494, 1456, 1436, 1261, 1096, 1048, 802, 703, 669, 655 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 7.24 – 7.18 (m, 1H), 7.12 (d, *J* = 7.4 Hz, 2H), 5.57 (dd, *J* = 29.6, 10.3 Hz, 2H), 3.23 (s, 1H), 2.60 (d, *J* = 21.1 Hz, 3H), 2.40 (d, *J* = 18.6 Hz, 1H), 2.26 – 2.16 (m, 1H), 1.93 (dd, *J* = 20.1, 11.2 Hz, 2H), 1.87 – 1.79 (m, 1H), 1.73 (dd, *J* = 14.0, 3.9 Hz, 3H), 1.35 (dd, *J* = 11.1, 5.0 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 130.5, 128.2, 126.3, 124.4, 124.1, 66.4, 56.0, 47.7, 38.4, 36.3, 33.9, 33.2, 31.7, 22.9, 18.5. HRMS (ESI) calculated for C₂₀H₂₉NNaOS⁺[M+Na]⁺: 354.1862, found 354.1861.

5. Preparation of compound 27 and rac-27

1) The preparation of compound 27

(S)-2-allyl-2-benzylcyclopentan-1-one **27**: The sulfinimine **2a** (0.12 g, 0.38mmol) was dissolved in methanol (2 mL). The resulting solution was treated with aqueous solution of HCI (4.0 M in water, 1 mL). The mixture was stirred at room temperature overnight. TLC indicated the starting material was fully consumed. The reaction was concentrated in high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether : ethyl acetate = 30 : 1) to give the ketone **27** (0.073 g, 90%) as colorless oil. [α]_D²⁵= +10.27 (c 1.95, CHCl₃). ¹H NMR (400 MHz, CHCl₃) δ 7.26 – 7.18 (m, 3H), 7.10 (d, *J* = 7.3 Hz, 2H), 5.73 (m, 1H), 5.09 (t, *J* = 13.7 Hz, 2H), 2.92 (d, *J* = 13.3 Hz, 1H), 2.60 (d, *J* = 13.3 Hz, 1H), 2.28 (dd, *J* = 13.7, 7.0 Hz, 1H), 2.14 (dd, *J* = 14.9, 8.2 Hz, 2H), 2.01 – 1.84 (m, 3H), 1.77 – 1.69 (m, 1H), 1.51 – 1.43 (m, 1H). ¹³C NMR (100 MHz, CHCl₃) δ 223.0 , 137.9 , 133.8 , 130.4 , 128.3 , 126.6 , 118.8 , 53.4 , 41.9 , 41.1 , 39.0 , 31.2 , 18.8 . HRMS (ESI) calculated for C₁₅H₁₈NaO⁺ [M+Na]⁺: 237.1250, found 237.1251.

2) The preparation of **rac-27**

Allyl-2-oxocyclopentane-1-carboxylate **rac-s1**: In a round bottom flask, a solution of compound **2a** (3.0 g, 13.25 mmol) in THF (65 mL) was added LiHMDS (1 M in THF, 27 mL, 27.00 mmol) in a nitrogen atmosphere at 0 °C. The mixture was kept stirring at room teperature for 4.0 hours. After the substrate was completely consumed (monitored by TLC analysis), the reaction mixture was quenched with saturated NH₄Cl (30 mL), and extracted by ethyl acetate (3 x 50 mL). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether :ethyl acetate = 10 : 1) to furnish the desired compound **rac-s1** (2.0 g, 83% yield) as a colorless oil:¹H NMR (400 MHz, CHCl₃) δ 5.97 – 5.87 (m, 1H), 5.38 – 5.24 (m, 2H), 4.68 – 4.63 (m, 2H), 3.20 (t, *J* = 9.1 Hz, 1H), 2.36 – 2.28 (m, 4H), 2.20 – 2.12 (m, 1H), 1.92 – 1.84 (m, 1H).¹³C NMR (100 MHz, CHCl₃) δ 212.3 , 169.2 , 131.8 , 118.6 , 66.0 , 54.8 , 38.2 , 27.5 , 21.1 .

Allyl-1-benzyl-2-oxocyclopentane-1-carboxylate **rac-s2**: β -ketoester **rac-s1** (2.0 g, 11.9 mmol) was added to a suspension of anhydrous K₂CO₃ (4.90 g, 35.7 mmol) in acetone (12 mL). To the reaction mixture was added Benzyl bromide (0.28 mL, 23.8 mmol). The resultant solution was placed in a preheated 50 °C oil bath. After 5 h, the reaction was removed from the heating bath and allowed to cool to ambient temperature. After cooling, the solution was filtered and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:ethyl acetate = 10:1) to furnish β -ketoester **rac-s2** (2.3 g, 76% yield) as a clear colorless oil:

¹H NMR (400 MHz, CHCl₃) δ 7.23 (dd, *J* = 15.7, 7.6 Hz, 3H), 7.14 (d, *J* = 7.0 Hz, 2H), 5.89 (ddt, *J* = 17.0, 11.2, 5.6 Hz, 1H), 5.28 (dd, *J* = 26.3, 13.8 Hz, 2H), 4.65 – 4.59 (m, 2H), 3.18 (q, *J* = 13.7 Hz, 2H), 2.46 – 2.34 (m, 2H), 2.08 – 1.88 (m, 3H), 1.60 (dd, *J* = 12.9, 7.2 Hz, 1H). ¹³C NMR (100 MHz, CHCl₃) δ 214.9, 170.8, 136.6, 131.7, 130.3, 128.5, 127.0, 118.7, 66.2, 61. 6, 39.1, 38.5, 31.8, 19.6.

2-Allyl-2-benzylcyclopentan-1-one **rac-27**: In a round bottom flask, a solution of compound **rac-s2** (0.2 g, 0.77 mmol) in THF (2 mL) was added Pd(OAc)₂ (18 mg, 0.077 mmol) and PPh₃ (79 mg, 0.3 mmol) in a nitrogen atmosphere at room temperature. The mixture was kept stirring at 60 °C for 1.0 hours. After the substrate was completely consumed (monitored by TLC analysis), the reaction mixture was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether :ethyl acetate = 10 : 1) to furnish the desired compound **rac-27** (150 mg, 91% yield) as a colorless oil: ¹H NMR (400 MHz, CHCl₃) δ 7.29 – 7.25 (m, 1H), 7.25 – 7.18 (m, 2H), 7.12 – 7.06 (m, 2H), 5.78 – 5.67 (m, 1H), 5.13 – 5.05 (m, 2H), 2.92 (d, *J* = 13.3 Hz, 1H), 2.59 (d, *J* = 13.3 Hz, 1H), 2.28 (dd, *J* = 13.7, 6.9 Hz, 1H), 2.15 (ddd, *J* = 14.8, 6.8, 4.5 Hz, 2H), 1.97 (ddd, *J* = 15.0, 7.0, 5.0 Hz, 1H), 1.89 (dt, *J* = 14.2, 5.2 Hz, 2H), 1.78 – 1.69 (m, 1H), 1.47 (tdd, *J* = 8.8, 7.9, 4.3 Hz, 1H).¹³C NMR (100 MHz, CHCl₃) δ 223.1, 137.9, 133.8, 130.4, 128.3, 126.6, 118.8, 53.3, 41.8, 41.0, 39.0, 31.1, 18.8 . HRMS (ESI) calculated for C₁₅H₁₈NaO⁺ [M+Na]⁺: 237.1250, found 237.1253.

6. HPLC analysis for determination of the ee value of compound 27

The crude product **27** was analyzed directly by Chiral HPLC using OJ-H (Agilent HPLC 1260) column. Eluted by 0.1% EtOH in hexanes.

The crude product **27** was also analyzed directly by Chiral HPLC using IA (Agilent HPLC 1260) column. Eluted by 5% i-PrOH in hexanes.

rac-27

7. NMR Spectrums of Compounds

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S 26

2a

110 100 f1 (ppm)

_ -62.41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

5 S ; / / / / шŃ M ee ui iii ullu 1.00% 1. 00H 2. 00H 2. 00H 1. 00H 7997 1.19 3. 00H 1. 001 9. 00- 7.5 7.0 4.0 3.5 f1 (ppm) 6.5 1.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.0 0.5 0.0 $\int_{-1126.7}^{-1140.3} 140.3 \\ \int_{-120.6}^{-130.6} 129.4 \\ \int_{-126.7}^{-126.7} 126.7 \\ -119.0$ - 196.4 ~ 57.0 ~ 54.6 $\begin{cases} 43.0 \\ 42.9 \\ 534.3 \\ 531.8 \end{cases}$ 22.6 200 190 180 150 130 80 70 60 50 40 30 20 10 0 170 160 140 120

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S 40

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

^{100 90} fl (ppm) 130 120

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

100 90 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S 51

S 56

S 60

S 63

8. Crystal data of Compound 29

Identification code	29
Empirical formula	C20H29NOS
Formula weight	331.50
Temperature/K	113(2)
Crystal system	monoclinic
Space group	P21
a/Å	10.5315(8)
b/Å	7.0899(4)
c/Å	12.4878(12)
$\alpha/^{\circ}$	90
β/°	105.290(8)
$\gamma/^{\circ}$	90
Volume/Å ³	899.42(13)
Z	2
$\rho_{calc}g/cm^3$	1.224
μ/mm^{-1}	0.185
F(000)	360.0
Crystal size/mm ³	$0.200\times0.180\times0.120$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/° 3.382 to 51.992	
Index ranges	-12 \leq h \leq 12, -8 \leq k \leq 8, -15 \leq l \leq 15
Reflections collected	7945
Independent reflections	$3484 [R_{int} = 0.0374, R_{sigma} = 0.0496]$
Data/restraints/parameters	3484/1/211
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0363, wR_2 = 0.0778$

 $\begin{array}{ll} \mbox{Final R indexes [all data]} & R_1 = 0.0438, \mbox{ } wR_2 = 0.0809 \\ \mbox{Largest diff. peak/hole / e $$A$^{-3}$ 0.16/-0.22} \\ \mbox{Flack parameter} & -0.01(5) \end{array}$