Supporting Information

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. China
E-mail: zwgao@snnu.edu.cn; Fax: +86-029-81530821

Table of Context

1. General Information ..2
2. General Procedure for Synthesis of 3,4-dihydropyrimidin-2(1H)-ones3
3. Experimental and Characterization Data...4
4. 1H and 13C Spectra for 3,4-dihydropyrimidin-2(1H)-ones Products9
5. HR-ESI-MS studies for proposed mechanism..27
6. 13C NMR Spectra studies for proposed mechanism..28
1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. 1H and 13C NMR spectra were recorded on a Bruker EQUINX55 (400 MHz for 1H; 101 MHz for 13C) spectrometer by using DMSO-d$_6$ as a solvent. For 1H NMR, tetramethylsilane (TMS) served as internal standard ($\delta = 0$) and 1H NMR chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (DMSO-d$_6$ at 2.5 ppm and 3.33 ppm) unless otherwise noted. The data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), and coupling constant in Hz. For 13C NMR, DMSO-d$_6$ was used as internal standard ($\delta = 39.52$) and spectra were obtained with complete proton decoupling.

ESI-MS and ESI-MS/MS measurements were performed in the positive-ion mode (m/z 50–2500 range) on an MAXIS instrument from Bruker. This instrument has a hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight (oa-TOF) geometry and was used in the TOF V+ mode. All samples were dissolved in methanol and were directly infused into the ESI source at a flow rate of 4.0L/min after 1 min at 180 °C. ESI source conditions were as follows: capillary voltage 4.0 kV, nebulizer 0.4 bar, scan begin 100m/z, scan end 1300m/z, collision cell RF 200.0 Vpp, end plate offset -500V.
2. General Procedure for Synthesis of 3,4-dihydropyrimidin-2(1H)-ones

A representative example for preparation of 4i is as following: a mixture of p-Bromo Benzaldehyde (185 g, 1 mmol), 1,3-dicarbonyl compound (128 µL, 1 mmol), urea (0.120 g, 2 mmol), and Cp₂TiCl₂ (0.0248 g, 10 mol % to all of the reactants) was charged into a 50 mL pressure flask with a magnetic stirring bar. EtOH (4 mL) was subsequent added by syringe. Then the reaction system was placed in an oil-bath (70 °C) with magnetic stirring. After completion of the reaction, as indicated by TLC analysis, the reaction mixture was carried out via Silica gel flask column chromatography (eluent: petroleum ether: EtOAc = 1:1) to give the desired product 4i 304.2 mg as white solid. Yield: 90%.
3. Experimental and Characterization Data

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4a, 93%)

1H NMR (400 MHz, DMSO) δ 9.19 (s, 1H), 7.74 (s, 1H), 7.34 – 7.29 (m, 2H), 7.24 (d, $J = 6.9$ Hz, 3H), 5.15 (d, $J = 3.1$ Hz, 1H), 3.98 (q, $J = 7.1$ Hz, 2H), 2.25 (s, 3H), 1.09 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.4, 152.3, 148.4, 144.9, 128.4, 127.3, 126.3, 99.4, 59.3, 54.1, 17.8, 14.1.

4-(4-tert-butyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4b, 88%)

1H NMR (400 MHz, DMSO) δ 9.18 (s, 1H), 7.70 (s, 1H), 7.33 (d, $J = 8.3$ Hz, 2H), 7.17 (d, $J = 7.9$ Hz, 2H), 5.14 (d, 1H), 3.99 (q, $J = 7.1$ Hz, 2H), 2.25 (s, 3H), 1.25 (s, 9H), 1.11 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.4, 152.4, 149.6, 148.2, 142.0, 125.9, 125.1, 99.5, 59.2, 53.5, 34.2, 31.1, 17.8, 14.1.

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4c, 90%)

1H NMR (400 MHz, DMSO) δ 9.19 (s, 1H), 7.70 (s, 1H), 7.17 (d, $J = 8.7$ Hz, 2H), 6.88 (d, $J = 8.7$ Hz, 2H), 5.13 (d, $J = 3.2$ Hz, 1H), 3.98 (q, $J = 7.1$ Hz, 2H), 3.71 (s, 3H), 2.26 (s, 3H), 1.10 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.5, 152.4, 148.6, 148.2, 142.0, 125.9, 125.1, 99.7, 59.2, 55.1, 53.5, 17.8, 14.1.

4-(3,4-dimethoxyphenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4d, 86%)

1H NMR (400 MHz, DMSO) δ 9.18 (s, 1H), 7.70 (s, 1H), 6.91 – 6.85 (m, 2H), 6.75 (d, $J = 9.6$ Hz, 1H), 5.13 (d, $J = 3.0$ Hz, 1H), 4.01 (q, $J = 7.0$ Hz, 2H), 3.72 (d, $J = 3.4$ Hz, 6H), 2.27 (s, 3H), 1.12 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.5, 152.4, 148.6, 148.2 (d, $J = 4.9$ Hz), 137.4, 118.0, 111.8, 110.6, 99.5, 59.3, 55.5 (d, $J = 10.0$ Hz), 53.6, 17.8, 14.2.
5-Ethoxycarbonyl-4-(4-methylphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4e,82%)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \delta 9.16 (s, 1H), 7.69 (s, 1H), 7.12 (s, 4H), 5.12 (d, J = 3.2 Hz, 1H), 3.98 (q, J = 7.0 Hz, 2H), 2.25 (d, J = 5.7 Hz, 6H), 1.10 (t, J = 7.1 Hz, 3H). \\
\text{C NMR (101 MHz, DMSO)} & \delta 165.4, 152.2, 148.2, 142.0, 136.4, 128.9, 126.2, 99.4, 59.2, 53.7, 20.7, 17.8, 14.1.
\end{align*}
\]

5-Ethoxycarbonyl-4-(3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4f,67%)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \delta 9.21 (s, 1H), 7.75 (s, 1H), 7.24 (t, J = 7.7 Hz, 1H), 6.86 – 6.78 (m, 3H), 5.15 (d, J = 2.5 Hz, 1H), 4.00 (q, J = 7.0 Hz, 2H), 3.72 (s, 3H), 2.26 (s, 3H), 1.11 (t, J = 7.0 Hz, 3H). \\
\text{C NMR (101 MHz, DMSO)} & \delta 165.4, 159.3, 152.4, 148.5, 146.4, 129.6, 118.3, 112.5, 112.2, 99.3, 59.3, 55.0, 53.9, 17.8, 14.2.
\end{align*}
\]

4-(4-Fluorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4g,87%)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \delta 9.23 (s, 1H), 7.75 (s, 1H), 7.30 – 7.23 (m, 2H), 7.18 – 7.11 (m, 2H), 5.16 (d, J = 3.2 Hz, 1H), 4.03 – 3.93 (m, 2H), 2.26 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). \\
\text{C NMR (101 MHz, DMSO)} & \delta 165.3, 162.6, 160.2, 152.1 (d, J = 9.3 Hz), 148.5 (d, J = 3.9 Hz), 141.2 (d, J = 3.0 Hz), 128.3 (d, J = 8.2 Hz), 115.1 (d, J = 21.1 Hz), 115.0 – 114.7 (m, 99.2 (d, J = 4.3 Hz), 59.2, 53.4, 17.8, 14.0.
\end{align*}
\]

4-(4-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4h,81%)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \delta 9.29 (s, 1H), 7.81 (s, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 5.19 (d, J = 2.4 Hz, 1H), 3.98 (dd, J = 12.4, 6.5 Hz, 2H), 2.28 (s, 3H), 1.08 (t, J = 7.0 Hz, 3H). \\
\text{C NMR (101 MHz, DMSO)} & \delta 165.3, 152.2, 148.8, 143.9, 132.0, 128.4 (d, J = 14.7 Hz), 99.0, 59.4, 53.6, 17.9, 14.1.
\end{align*}
\]

4-(4-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one(4i,90%)
1H NMR (400 MHz, DMSO) δ 9.30 (s, 1H), 7.81 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 5.17 (d, J = 12.4 Hz, 1H), 3.98 (dd, J = 13.2, 6.4 Hz, 2H), 2.28 (s, 3H), 1.08 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.3, 152.2, 148.8, 144.3, 131.4, 128.7, 120.5, 99.0, 59.4, 53.7, 17.9, 14.1.

4-(2-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4j, 67%)

1H NMR (400 MHz, DMSO) δ 9.32 (s, 1H), 7.74 (s, 1H), 7.32 (dt, J = 28.2, 8.3 Hz, 4H), 5.67 (d, 1H), 3.90 (q, J = 7.1 Hz, 2H), 2.32 (s, 3H), 0.99 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.0, 151.6, 149.3, 141.8, 132.7, 129.4, 128.8, 127.8, 98.5, 59.1, 54.1, 17.7, 14.0.

4-(2-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4k, 75%)

1H NMR (400 MHz, DMSO) δ 9.33 (s, 1H), 7.72 (s, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.33 (s, 2H), 7.17 (s, 1H), 5.65 (d, J = 2.0 Hz, 1H), 3.90 (q, J = 7.0 Hz, 2H), 2.33 (s, 3H), 0.99 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.0, 151.5, 149.3, 143.4, 132.7, 129.4, 128.5, 122.4, 98.5, 59.1, 54.1, 17.7, 14.0.

4-(3-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4l, 78%)

1H NMR (400 MHz, DMSO) δ 9.29 (s, 1H), 7.81 (s, 1H), 7.47 – 7.39 (m, 2H), 7.28 (q, J = 7.7 Hz, 2H), 5.18 (d, J = 2.9 Hz, 1H), 4.01 (dd, J = 14.9, 7.3 Hz, 2H), 2.28 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.2, 152.0, 149.0, 147.6, 130.8, 130.2, 129.3, 125.3, 121.6, 98.7, 59.4, 53.7, 17.9, 14.1.

5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4m, 67%)

1H NMR (400 MHz, DMSO) δ 9.38 (s, 1H), 8.11 (s, 2H), 7.91 (s, 1H), 7.67 (dt, J = 15.5, 7.7 Hz, 2H), 5.33 (d, J = 3.1 Hz, 1H), 3.98 (dd, J = 7.3, 7.7 Hz, 2H), 2.28 (s, 3H), 0.99 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.0, 151.6, 149.3, 143.4, 132.7, 129.4, 128.5, 122.4, 98.5, 59.1, 54.1, 17.7, 14.0.
13.5, 6.7 Hz, 2H), 3.40 (s, 1H), 2.28 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 165.1, 152.0, 149.4, 147.8, 147.1, 133.1, 130.2, 122.4, 121.1, 98.5, 59.5, 53.7, 17.9, 14.0.

5-Ethoxycarbonyl-6-methyl-4-isopropyl-3,4-dihydropyrimidin-2(1H)-one (4n, 12%)

\[\text{EtO} \quad \text{NH} \quad \text{NH} \quad \text{Me} \quad \text{C} \quad \text{H}_3 \]

\[\begin{align*}
1^1H \text{ NMR (400 MHz, DMSO)} & \delta 8.89 (s, 1H), 7.28 (s, 1H), 4.11 - 4.01 (m, 2H), 3.95 (t, J = 3.4 Hz, 1H), 2.17 (s, 3H), 1.18 (t, J = 7.1 Hz, 4H), 0.82 (d, J = 6.9 Hz, 3H), 0.74 (d, J = 6.8 Hz, 3H). \\
13C \text{ NMR (101 MHz, DMSO)} & \delta 165.8, 153.2, 148.5, 98.2, 59.1, 55.5, 34.6, 18.5, 17.7, 16.0, 14.2.
\end{align*} \]

5-Ethoxycarbonyl-6-methyl-4-propyl-3,4-dihydropyrimidin-2(1H)-one (4o, 50%)

\[\text{EtO} \quad \text{NH} \quad \text{NH} \quad \text{Me} \quad \text{C} \quad \text{H}_3 \]

\[\begin{align*}
1^1H \text{ NMR (400 MHz, DMSO)} & \delta 8.93 (s, 1H), 7.32 (s, 1H), 4.10 - 4.01 (m, 3H), 2.16 (s, 3H), 1.43 - 1.30 (m, 3H), 1.18 (t, J = 7.1 Hz, 4H), 0.85 (t, J = 6.9 Hz, 3H). \\
13C \text{ NMR (101 MHz, DMSO)} & \delta 165.5, 152.9, 148.3, 99.5, 59.1, 49.8, 39.1, 17.7, 17.0, 14.2, 13.7.
\end{align*} \]

5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4p, 77%)

\[\text{MeO} \quad \text{NH} \quad \text{NH} \quad \text{Me} \quad \text{C} \quad \text{H}_3 \]

\[\begin{align*}
1^1H \text{ NMR (400 MHz, DMSO)} & \delta 9.25 (s, 1H), 7.78 (s, 1H), 7.36 - 7.29 (m, 2H), 7.28 - 7.21 (m, 3H), 5.18 (d, J = 3.1 Hz, 1H), 3.54 (s, 3H), 2.27 (s, 3H). \\
13C \text{ NMR (101 MHz, DMSO)} & \delta 165.9, 152.3, 148.7, 144.7, 128.5, 127.3, 126.2, 99.1, 53.9, 50.8, 17.9.
\end{align*} \]

5-Methoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4q, 90%)

\[\text{MeO} \quad \text{NH} \quad \text{NH} \quad \text{Me} \quad \text{C} \quad \text{H}_3 \]

\[\begin{align*}
1^1H \text{ NMR (400 MHz, DMSO)} & \delta 9.21 (s, 1H), 7.71 (s, 1H), 7.17 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.12 (d, J = 3.1 Hz, 1H), 3.72 (s, 3H), 3.53 (s, 3H), 2.27 (s, 3H). \\
13C \text{ NMR (101 MHz, DMSO)} & \delta 165.9, 158.5, 152.3, 148.4, 136.9, 127.4, 113.8, 99.4, 55.1, 53.3, 50.8, 17.9.
\end{align*} \]
5,6-Dimethyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4R,3S,4%)}

1H NMR (400 MHz, DMSO) δ 9.20 (s, 1H), 7.85 (s, 1H), 7.35 – 7.31 (m, 2H), 7.26 (d, J = 4.8 Hz, 3H), 5.28 (d, J = 3.3 Hz, 1H), 2.30 (s, 3H), 2.11 (s, 3H). 13C NMR (101 MHz, DMSO) δ 194.7, 152.6, 148.5, 144.7, 128.9, 127.8, 126.8, 110.0, 54.3, 30.7, 19.3.
4. 1H and 13C Spectra for 3,4-dihydropyrimidin-2(1H)-ones Products

![Diagram of 3,4-dihydropyrimidin-2(1H)-ones Products]
5. HR-ESI-MS studies for proposed mechanism.

![HR-ESI-MS spectra of intermediate I mode.](image)

Figure S5-1. ESI(+)–MS spectra of intermediate I mode.
Figure S5-2. ESI(+)‐MS spectra of intermediate III mode.

Figure S5-3. ESI(+)‐MS spectra of intermediate VI mode.

Figure S5-4. ESI(+)‐MS spectra of intermediate IV mode.
Figure S5-5. MS/MS spectrum and the fragment structures of intermediate I under positive ion mode.

Figure S5-6. MS/MS spectrum and the fragment structures of intermediate VI under positive ion mode.

Figure S5-7. MS/MS spectrum and the fragment structures of intermediate III under positive ion mode.
6. 13C NMR Spectra studies for proposed mechanism
D. O=O + EtOH

E. Cp_2TiCl_2 + O=O + EtOH

F. Cp_2TiCl_2 + CHO + EtOH
G. $\text{Cp}_2\text{TiCl}_2 + \text{H}_2\text{N} = \text{NH}_2 + \text{EtOH}$

H. $\text{Cp}_2\text{TiCl}_2 + \text{CHO} + \text{H}_2\text{N} = \text{NH}_2 + \text{EtOH}$

I. $\text{Cp}_2\text{TiCl}_2 + \text{O} = \text{OEt} + \text{H}_2\text{N} = \text{NH}_2 + \text{EtOH}$