Mesoporous NiO nanosphere: a sensitive strain sensor for determination of hydrogen peroxide

Qin Li a, Wenbin Gao a, Xiaopeng Zhang a, Haitao Liu a,b, Meiling Dou a,b, Zhengping Zhang a,b,* and Feng Wang a,b,*

a State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China.

b Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

E-mail: wangf@mail.buct.edu.cn; zhangzhengping@mail.buct.edu.cn
Fig. S1 SAED patterns of a) NiO-MNS and b) NiO-NS.

Fig. S2 XPS survey spectra of the NiO-MNS and NiO-NS samples.
Fig. S3 High-resolution XPS spectra of Ni 2p and O 1s for NiO-MNS (a, b) and NiO-NS (c, d), respectively.

Table S1 The Ni- and O-content of NiO-MNS and NiO-NS. The capacitance of three Ni moieties and three O moieties of the above two samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface chemistry (XPS)</th>
<th>Functionality (at % of total Ni 2p)</th>
<th>Functionality (% of total O 1s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni (at %)</td>
<td>O (at %)</td>
<td>Ni (II)</td>
</tr>
<tr>
<td>NiO-MNS</td>
<td>43.1</td>
<td>56.9</td>
<td>26.6</td>
</tr>
<tr>
<td>NiO-NS</td>
<td>43.6</td>
<td>56.4</td>
<td>16.1</td>
</tr>
</tbody>
</table>
Fig. S4 Raman spectra of the NiO-MNS and NiO-NS samples.

Fig. S5 a) Chronoamperometric response of NiO-NS towards the step injection of 40 μM H₂O₂ solution at different potentials. b) Linear relationship between the response current and the H₂O₂ concentration.
Fig. S6 Chronoamperometric response of five parallel NiO-MNS sensors towards the injection of hydrogen peroxide at 0.45 V.

Fig. S7 Linear relationship between the response current of five parallel sensors and the H_2O_2 concentration.