Supplementary Information
Edgar C. Buck,* Rick S. Wittman, Chuck Z. Soderquist, Bruce McNamara,
Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352

In-situ Observations
We used in-situ liquid cells (LC) in a scanning electron microscope (SEM) using backscattered electron (BSE) contrast to allow the direct observation of the precipitation and dissolution of uranium (U). Because of the very high BSE contrast from the U-bearing phases, it was possible to determine growth/dissolution rate with high spatial resolution and investigate the dynamics of the process.

In Figure S1, particles of UO$_2$ were irradiated over the entire image area for a period of time. Here, the beam was on continuously, generating radiolytic species in solution. If H$_2$O$_2$ was generated by the electron beam, it would be predicted that the UO$_2$ would partially dissolve and eventually, a U-peroxide phase would precipitate. After a period of time (>10 minutes), a phase appeared on the surface of the UO$_2$ particles. Alteration of UO$_2$ with H$_2$O$_2$ is known to generate the secondary phase, studtite. This was confirmation that the electron beam was generating peroxide in sufficient concentration to induce both UO$_2$ oxidative dissolution and precipitation of a secondary phase. This was the first time that this had been observed in a wetSEM liquid cell although similar in-situ dissolution experiments have been performed with ex-situ radiation sources [1-3] and He$^+$ irradiation [4].

The irradiation of the beam over a specific area could be accomplished in the microscope by selecting a specific area and allowing the beam to raster continuously. Over time, a white area would form, an image would be taken over a larger area encompassing a much larger area than was irradiated. The images revealed bright regions within the irradiated region. To determine the amount of material in these areas, a line histogram was generated. The intensity yielded a value that was used to represent the amount of material precipitated. The brightness/contrast settings were kept constant during the irradiations. The background contrast level was the same in each experiment and this value was subtracted from the result to yield the intensity from the presence of the peroxide phase.
H₂ Gas production measured in-situ

Three chemical reactions are considered responsible for the majority of the formation of molecular hydrogen during radiolysis:

\[H + H \rightarrow H₂ \]
\[e_{aq}^- + e_{aq}^- (+2H₂O) \rightarrow H₂ + 2OH^- \]
\[e_{aq}^- + H (+H₂O) \rightarrow H₂ + OH^- \]

\[k_1 = 7.8 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \]
\[k_2 = 5.5 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \]
\[k_3 = 2.5 \times 10^{9} \text{ M}^{-1}\text{s}^{-1} \]

The formation of H₂ could be monitored in the electron microscope with DIW (see Figure S2). The steady growth in the gas bubble consistent with the predictions.

![Figure S2](image)

Figure S2 Irradiation of DIW (A) 0 sec, (B) 32 sec, (C) 52 sec, (D) 70 sec, (E) 87 sec

Radiolytic models confirm that the starting concentration of O₂ has little impact on radiolysis

![Figure S3](image)

Figure S3 (A) In the presence of oxygen and (B) under anoxic conditions, the production rate of H₂ and H₂O₂ is invariant. Note the scales are different but the slopes are the same.

The starting concentration of O₂ has little impact on the overall generation of H₂O₂ and H₂ in the wetSEM cell. High LET radiolysis, results in the continuous generation of the molecular species with time (see Figure S3). This eventually results in sufficient gas generation that can rupture the cells. In contrast, low LET (higher energy electrons) would result in a limited concentration of these species as the high production rate of radicals prevents continuous gas production.
Radiolytic Chemical Modelling

Along with ionization, the interaction of energetic radiation with water molecules generates very short-lived (10^{-15} s) electronic excitations that de-excite through intermediate atomic and molecular radicals as shown in Figure S4. The reaction of these radicals with the surrounding aqueous environment occurs on the scale of 10^{-9} s, resulting in several dominant species—both stable and unstable. The G-values are strongly affected by radiation quality [or linear energy transfer (LET)]. In general, alpha particles have high LET and beta/gamma has low LET (see Table S1). However, many low-energy beta particles have high effective LET.

The electron microscope represents a special case for modeling radiation chemistry because of the nature of the rastering beam and the spatial confinement of the system in the z-direction. We modelled the behaviour of the beam at several different energies. At 15 keV, all radiolytic events take place within a small region leading to an effective high linear energy transfer. A similar idea was developed from a study of radiolysis from tritium [5, 6]. According to the computer program CASINO the 15 keV electron beam is almost completely stopped in water within 3 µm.

![Figure S4. Schematic of reaction pathways in the radiolysis model (adapted from [7-10])]

Table S1. Alpha particle (5 MeV) G-values

<table>
<thead>
<tr>
<th>Species</th>
<th>G-value (molecules/100-eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺</td>
<td>0.18</td>
</tr>
<tr>
<td>H₂O</td>
<td>−2.58</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>1.00</td>
</tr>
<tr>
<td>e⁻</td>
<td>0.15</td>
</tr>
<tr>
<td>H</td>
<td>0.10</td>
</tr>
<tr>
<td>·OH</td>
<td>0.35</td>
</tr>
<tr>
<td>HO₂</td>
<td>0.10</td>
</tr>
<tr>
<td>H₂</td>
<td>1.20</td>
</tr>
</tbody>
</table>

This means that the linear energy transfer (LET) is large compared to γ- or x-rays and the subsequent g-values will be more like neutron or α-radiation values than high energy β/γ. Hence, we adopted G-values for high LET radiation, such as neutrons or α-particles to represent the behavior of electron irradiation in the wetSEM cell (see Table S1 for the G-values used).
Along with ionization, the interaction of energetic radiation with water molecules can generate very short-lived (10^{-15}s) electronic excitations that favorably de-excite through intermediate atomic and molecular radicals. The reaction of these radicals with the surrounding aqueous environment occurs on the scale of 10^{-9}s, resulting in several dominant species – both stable and unstable. We take the conventional approach in representing the radiolytically-generated species at the later time scale with effective G-values. The G-values account for the effective fraction of radiative energy that contributes to the formation energy of the dominant radiolytic species. The products of G-values with the dose rate act as source terms to the kinetics equations for each for the species.

The coupled kinetics rate equations for the component concentrations \([A]_n\) are

\[
\frac{d[A]_n}{dt} + J^{(i)}_n - J^{(i)}_{n-1} = G_i \Delta n + \sum_{r=1}^{N_r} \sum_{j_r=1}^{n_r} k_{jr} \prod_{j_r=1}^{n_r} \left[A_{jr} \right]_{n}^{O_{jr}}
\]

with rate constants \(k_r\), dose rate \(\Delta n\), and radiolytic generation constants \(G_i\), where the diffusive currents \((J^{(i)})\) and diffusion constants \((D_i)\) appear in the discretized Fick’s Law according to

\[
J^{(i)}_n = -2D_i \frac{[A]_{n+1} - [A]_n}{x_{n+1} - x_n}
\]

for each component \(i\) in region \(n\). **Table S2** shows the values of diffusion constants used in the model. For brevity, the "sum-of-products" on right-hand side of Eq. 1 expresses the sum of the product of reactant concentrations entering with reaction order \(O_{jr}\) where the multiplication-index \(j_r\) is over the \(n_r\) reactants for reaction \(r\). The notation includes the final state order of component \(i\) produced by writing the rate constants \(k_{jr}\), dependent on index \(i\). That dependence amounts to an integer (which could be zero) multiplied by the reaction rate constants reported by Buck and Wittman [12] and Buck et al. [13].

References

