Supplementary material

Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones

Qiying Liu a,*, Caihong Zhang a,b, Ning Shi a,b, Xinghua Zhang a,*, Chenguang Wang a, Longlong Ma a

a CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China and

b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
Scheme S1 Formation mechanism of FF-CP-FF by aldol condensation of CP and FF.
Fig. S1 Photographs of the condensation intermediates: (a) FF-CP-FF; (b) FF-CH-FF; (c) HMF-CP-HMF; (d) HMF-CH-HMF.
Fig. S2 The 13C NMR spectrum of FF-CH-FF.
Fig. S3 The 13C NMR spectrum of HMF-CP-HMF.
Fig. S4 The 13C NMR spectrum of HMF-CH-HMF.
Fig. S5 Photograph of intermediate produced by FF-CP-FF hydrogenation at 150 °C over Pd/C. Reaction condition: 1 mmol FF-CP-FF, 15 mL H₂O, 0.05g Pd/C, 4 MPa H₂, 3 h.
Fig. S6 The 13C NMR spectra of hydrogenated products from FF-CP-FF at different temperatures. Reaction condition: 1 mmol FF-CP-FF, 15 mL H$_2$O, 0.05g Pd/C, 4 MPa H$_2$, 3 h.
Fig. S7 Representative GC result from hydrodeoxygenation of FF-CP-FF. Reaction conditions: 1.0 mmol FF-CP-FF, 15 mL H₂O, 0.05 g Pd/C, 0.10 g ZrP, 300 °C, 3 h and 4 MPa H₂ pressure.