Fig. S1. Cole-cole semicircles of as-milled FeCoNiSi$_x$Al$_{0.4}$ (a-e for $x=0.1, 0.2, 0.3, 0.4$, and 0.5) HEA powders.
Fig. S2. Cole-cole semicircles of as-annealed FeCoNiSi$_x$Al$_{0.4}$ (a-e for $x=0.1, 0.2, 0.3, 0.4$, and 0.5) HEA powders.
Fig. S3. Reflection loss of the as-milled FeCoNiSi$_x$Al$_{0.4}$ (a-e for $x=0.1$, 0.2, 0.3, 0.4, and 0.5) HEA powders in the frequency range of 2-18GHz.
Fig. S4. Reflection loss of the as-annealed FeCoNi$_x$Al$_{0.4}$ (a-e for $x = 0.1$, 0.2, 0.3, 0.4, and 0.5) HEA powders in the frequency range of 2-18GHz.
Fig. S5. Reflection loss of the as-milled (a) and as-annealed (b) FeCoNiSi$_x$Al$_{0.4}$ HEA powders for 2mm thickness. The position of absorption peaks agree with the change of dielectric constant.

Fig. S6. Reflection loss of the as-annealed FeCoNiSi$_{0.3}$Al$_{0.4}$ (a-d for 573K-873K) HEA powders in the frequency range of 2-18GHz.
Fig. S7. Reflection loss of the as-milled and as-annealed (573-873K) FeCoNiSi_{0.3}Al_{0.4} HEA powders for 2mm thickness. The position of absorption peaks agree with the change of dielectric constant.

Fig. S8. Effects of annealing temperature on the (a-b) relative complex permittivity and (c-d) complex permeability for FeCoNiSi_{0.1}Al_{0.4} alloy powders. The symbols of ■, ○, △, ▽ and □ denote the milled, 573K, 673K, 773K and 873K composites, respectively.
Fig. S9. Effects of annealing temperature on the (a-b) relative complex permittivity and (c-d) complex permeability for FeCoNiSi$_{0.2}$Al$_{0.4}$ alloy powders. The symbols of , , , and denote the milled, 573K, 673K, 773K and 873K composites, respectively.

Fig. S10. Effects of annealing temperature on the (a-b) relative complex permittivity and (c-d) complex permeability for FeCoNiSi$_{0.4}$Al$_{0.4}$ alloy powders. The symbols of
denote the milled, 573K, 673K, 773K and 873K composites, respectively.

![Graphs](image)

Fig. S11. Effects of annealing temperature on the (a-b) relative complex permittivity and (c-d) complex permeability for FeCoNiSi$_{0.5}$Al$_{0.4}$ alloy powders. The symbols of \square, \square, \square, \square, and \square denote the milled, 573K, 673K, 773K and 873K composites, respectively.

Table S1. Effects of Si content on the conductivity of initial and annealed alloy powders.

<table>
<thead>
<tr>
<th>Conductivity (S/cm)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>29.58</td>
<td>11.19</td>
<td>21.98</td>
<td>10.75</td>
<td>4.88</td>
</tr>
<tr>
<td>anneal-300°C</td>
<td>93.11</td>
<td>22.73</td>
<td>36.27</td>
<td>12.49</td>
<td>10.24</td>
</tr>
<tr>
<td>anneal-400°C</td>
<td>104.28</td>
<td>97.08</td>
<td>141.26</td>
<td>84.36</td>
<td>48.47</td>
</tr>
<tr>
<td>anneal-500°C</td>
<td>221.14</td>
<td>124.56</td>
<td>133.65</td>
<td>69.58</td>
<td>62.25</td>
</tr>
<tr>
<td>anneal-600°C</td>
<td>218.08</td>
<td>61.68</td>
<td>94.05</td>
<td>72.74</td>
<td>23.44</td>
</tr>
</tbody>
</table>