## Supplementary information

## Flexible C-Mo<sub>2</sub>C fiber film with self-fused junctions as a long

## cyclability anode material for sodium-ion battery

Wenjie Zhang,<sup>a</sup> Zeyu Guo,<sup>a</sup> Qinghua Liang,<sup>a</sup> Ruitao Lv,<sup>ab</sup> Wanci Shen,<sup>a</sup> Feiyu Kang,<sup>a</sup> Yuqing Weng<sup>a</sup> and Zheng-Hong Huang<sup>\*ab</sup>

<sup>a</sup> State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and

Engineering, Tsinghua University, Beijing 100084, P.R. China

<sup>b</sup> Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua

University, Beijing 100084, P.R. China

\*Corresponding author: <a href="mailto:zhhuang@tsinghua.edu.cn">zhhuang@tsinghua.edu.cn</a>

## Supplementary Figures, Tables and related discussion



Fig. S1. SEM images of electrospun precursor PAN/(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>.4H<sub>2</sub>O fiber film.

In electrospinning, DMF is evaporated in flight and the solidified PAN,  $(NH_4)_6Mo_7O_{24}.4H_2O$  forms a intersecting fiber film. Fig. S1 shows the SEM images of precursor PAN/ $(NH_4)_6Mo_7O_{24}.4H_2O$  fibers, the fibers have a smooth surface with a diameter of 120-250 nm.



Fig. S2. (a) XRD pattern, (b-c) TEM images of precursor fiber carbonized at 600 °C for 1h, (d) HRTEM image of the region in the red frames of (c).

Before the carbonization temperature reaches 800 °C, the  $(NH_4)_6MO_7O_{24}.4H_2O$  in the precursor fiber will first decompose into  $MoO_2$  and form the high active C-MoO\_2-C interface at the fiber junction. Fig. S2 shows the XRD pattern and TEM images of precursor fiber carbonized at 600 °C. The XRD result shows the characteristic peaks can be readily indexed to be monoclinic  $MoO_2$  (JCPDS No. 65-5787). The TEM and HRTEM images show that the  $MoO_2$  particles dispersed on the carbon fiber and form the obvious C-MoO\_2-C interface at the fiber junction, while the junctions have not yet fused. The set of lattice fringes with an interplane spacing of 2.8 Å corresponds to the (100) planes of monoclinic  $MoO_2$  (Fig. S2d).



Fig. S3. (a-b) SEM images, (c-d) TEM images of C fiber film.

Fig. S3 shows the SEM and TEM images of C fiber film. The C fiber film is obtained by carbonizing pure PAN fibers at 800 °C for 5h in Ar atmosphere. The fibers intersect each other, while the junctions are not fused.



Fig. S4. Charge/discharge curves of C fiber film for the initial three cycles at 20 mA g<sup>-1</sup>.



Fig. S5. TGA curve of C-Mo<sub>2</sub>C fiber film.

Fig. S5 shows the TGA curve of C-Mo<sub>2</sub>C fiber film under Air at a heating rate of 10  $^{\circ}$ C min<sup>-1</sup>. The Mo<sub>2</sub>C content in the C-Mo<sub>2</sub>C fiber film is calculated to be about 22 wt% from the TGA curve.

The carbon fiber content in the C-Mo<sub>2</sub>C fiber film is about 78 wt% (Fig. S5). The C-Mo<sub>2</sub>C fiber film and C fiber film exhibit capacity of 212 and 121 mAh g<sup>-1</sup> at 50 mA g<sup>-1</sup>, respectively. The contribution of carbon fiber on whole capacity of Mo<sub>2</sub>C/C composites could be calculated from the following equation:

M (carbon fiber) =  $78\%*121/212 \approx 44.5\%$