Supporting Information

Synthesis of MnS/Ni₅S₃ Composite with Nanoparticles coated on Hexagon Sheets Structures as An Advanced Electrode Material for Asymmetric Supercapacitors

Qing Pan a,1, Xijia Yang b,1, Xiaohong Yang a, Lianfeng Duan b, Lijun Zhao a,*

a Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Nanling Campus, Changchun, 130025, P. R. China.

b Key Laboratory of Advanced Structural Materials, Ministry of Education, and Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China

*E-mail address: lijunzhao@jlu.edu.cn

Fax: +86-431-85095876
Supporting Figures

Fig. S1 FE-SEM images of (a) MS; (b) NS; (c) NMS-1 (1:2) and (d) NMS-2 (1:1).
Fig. S2 EDX spectrum of the NMS.
Fig. S3 (a) XRD patterns of the as-prepared NS, MS, NMS, NMS-1 and NMS-2 electrode; (b) XRD patterns of the as-prepared Ni-Mn precursor and NMS samples with different sulfurization time (2, 4 and 6 h).
Fig. S4 (a) CV curves at various scan rates; (b) galvanostatic charge-discharge curves at different current density of AC.