Silver nanoparticle modified surfaces induce differentiation of Mouse Kidney-Derived Stem Cells

Neelika Roy Chowdhury1, Isabel Hopp2, Peter Zilm3, Patricia Murray2,* and Krasimir Vasilev1,*

1School of Engineering, University of South Australia, Mawson Lakes–SA 5095
2Institute of Translational Medicine, University of Liverpool, Liverpool, U.K
3Microbiology laboratory, Adelaide Dental School, The University of Adelaide, Adelaide-SA 5005

*Corresponding author email addresses: P.A.Murray@liverpool.ac.uk and Krasimir.vasilev@unisa.edu.au

SUPPORTING INFORMATION

\textbf{Figure SI 1} – 2D AFM images of pPOX coated glass coverslips without (A) and with (B) immobilized AgNPs@MSA. RMS roughness of pPOX film before (C) and after (D) silver nanoparticles immobilization.
Figure SI 2 – Mouse kidney stem cells (mKSCs) cultured on silver nanoparticles containing substrates (S_L and S_H) for 96 h express podocyte specific marker podocalyxin (red). Arrowheads indicate presence of podocalyxin expressing binucleate mKSCs. Nuclei were stained with 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) (blue). F-actin were stained with phalloidin (green).