Development, modification and application of low cost and available biochar derived from corn straw for the removal of vanadium(V) from aqueous solution and real contaminated groundwater

Ruihong Menga,b, Tan Chenc, Yaxin Zhangd, Wenjing Lua,b,*, Yanting Liua,b, Tianchu Lue, Yanjun Liua,b, Hongtao Wanga,b,*

a School of Environment, Tsinghua University, Beijing 100084, P. R. China
b Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, P. R. China
c College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, P. R. China
d College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
e CECEP Clean Technology Development Co., Ltd, Beijing 100083, P. R. China

* Corresponding author at: School of Environment, Tsinghua University, Beijing 100084, China

Email addresses: htwang@tsinghua.edu.cn (Hongtao Wang)
luwenjing@tsinghua.edu.cn (Wenjing Lu)
Thermo-gravimetric analysis

The TG curves of different absorbents (Figure 1S) showed that a continuous weight loss distributed in the range of 38–1000°C. Comparison of the TG curves showed that biochars and AC had higher residual mass (> 70%). Generally, thermal decomposition of biochar could be divided into three stages [31]. In the first stage, loss of surface water occurred at temperatures ranging from 50°C to 100°C. The second stage ranged from 100°C to 350°C, where the degradation of surface functional group occurred. In the last stage, once the temperature was higher than 350°C, the carbon skeletons started to disappear. As the temperature continued to increase from 350°C to 700°C, a smooth and steady weight loss (3.06%-8.08%) of biochars was observed (Figure 1S). Biochars and AC followed nearly different degradation patterns in temperatures from 700°C to 1000°C. Zr-BC, Cs-BC, BC and AC showed better thermal stability as compared to Zn-BC. Thus, comparing the residual mass, Zr-BC (89.12%), AC (87.39%), Cs-BC (82.38%) and BC (81.91%) had better protection from thermal degradation than Zn-BC (72.67%).
Figure 1S. TG curves of modified biochars, BC and AC.
Figure 2S. pH of aqueous solution after vanadium(V) sorption. Equilibrium conditions: adsorbent dosage 1-8 g/L, 25.0 ± 1.0 °C.
Figure S3. SEM images of the modified biochars: (a) Cs-BC (10000× magnification), (b) Zn-BC (10000× magnification), (c) Zn-BC (50000× magnification), (d) Zr-BC (10000× magnification).
References