Supplementary information

Wide Channel Broadband CH$_3$NH$_3$PbI$_3$/SnS Hybrid Photodetector: Breaking the Limit of Bandgap Energy Operation

Mohit Kumar$^{†, ^}$, Hong-Sik Kim,$^{†, ^}$ Dae Young Park$^{#}$, Mun Seok Jeong $^{#}$ and Joondong Kim$^{*, †, ^}$

† Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 22012, Republic of Korea

^ Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 22012, Republic of Korea

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

E-mail: *J. Kim (joonkim@incheon.ac.kr)
Figure S1. A photograph of the device. (a) The cross-shape patterned ITO, (b) SnS on patterned ITO, (c) Perovskite on top of the device.
Figure S2. a) Dark $I-V$ characteristics of the CH$_3$NH$_3$PbI$_3$/SnS device width different channel widths, b) The change in the photocurrent as a function of channel width.