Ultraflexible, Stretchable and Fast-switching Electrochromic Devices with Enhanced Cycling Stability

Qian Liu,†a Zijie Xu,†a Wu Qiu,a Chen Hou,a Yanan Wang,a Peijian Yao,a Rui Yu,a Wenxi Guo,*a Xiang Yang Liu*ab

aResearch Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China.

bDepartment of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore.

Email: wxguo@xmu.edu.cn; phyliuxy@nus.edu.sg
Figure S1. Photographs (left) and the schematic illustration (right) of the electrode films after the adhesion test with a scotch tape, respectively.
Figure S2. Optical image of Ag NN on the PET substrate.
Figure S3. EDX elemental spectra analysis of magnetron sputtered WO$_3$.
Figure S4. Photographs and light transmission spectra of commercial ITO, Ag NN, WO₃/Ag NN, Ag NN/PEDOT:PSS and the WO₃/Ag NN/PEDOT:PSS hybrid film.
Figure S5. SEM images of the hybrid film before and after stretching measurement (50% tensile strain). The scale bar is 10 μm.
Figure S6. Schematic representation of the electrochromic measurement installation integrated by an electrochemical workstation and a UV-vis-NIR spectrometer. A WO$_3$/Ag NN/PEDOT: PSS/ WO$_3$ hybrid film, a Pt foil, and a saturated calomel electrode (SCE) serve as working electrode, counter electrode, reference electrode, and the electrolyte, respectively. All the electrodes are placed in a quartz cuvette containing 1 M LiClO$_4$/PC solution at a wavelength of 623 nm. Chronoamperometry mode of the electrochemical workstation for electrochemical test.
Figure S7. The optical contrast as a function of the thickness of the external WO₃ film.
Figure S8. Optical images of bleached, colored and bending state in cycling.