Supporting Information

Porous MnFe$_2$O$_4$-Decorated PB Nanocomposites: a New Theranostic Agent for Boosted T$_1$/T$_2$ MRI-Guided Synergistic Photothermal/Magnetic Hyperthermia

Xi Zhou, a Xiaolin Lv, a Wen Zhao, a Tiantian Zhou, b Shupeng Zhang, a Zhan Shi, c Shefang Ye*, a Lei Ren, a and Zhiwei Chen* b

a Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China, b Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005, P. R. China, and c Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P. R. China.

![Fig. S1](image_url)
(A) The zeta potentials of MnFe$_2$O$_4$ and PB in water. (B) The average diameter of porous in MPB NPs was measured in SEM images by Nano Measurer.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018
Fig. S2 Hydrodynamic particle size of the MnFe$_2$O$_4$ (A), PB and MPB (B) NPs in water; The diameter of MPB NPs in water (C) and PBS (D) at different time intervals.
Fig. S3 Temperature variations of the MPB NPs under irradiation of an 808 nm laser (1.0 W cm\(^{-2}\)) and AC magnetic field (20A) synergistically for three cycles.

Fig. S4 In vitro experiments. (A) In vitro cytotoxicity of MPB NPs against Hela after 24 h incubation. (B)
Cell viability of Hela cells incubated with MPB, MPB+PTT, MPB+MHT and MPB+MHT&PTT. (C) Cellular uptake of MPB NPs at different time intervals with Hela cells. (D) Flow cytometry analysis the toxicities of PBS, MPB+MHT, MPB+PTT and MPB+MHT&PTT with Hela cells.

Fig. S5 CLSM images of Hela cells incubated with PBS and MPB-FITC for 4h. The cells were stained by DAPI (blue) and FITC was green.