Supplementary Information

Nickel Foam Supported β-Ni(OH)$_2$ as a Green Anodic Catalyst for Energy Efficient Electrooxidative Degradation of Azo-Dye Wastewaters

Shan Suna, Peng Diaoa,*, Cuiyun Fenga, Eleonora-Mihaela Ungureanub, Yi Tangc, Bin Huc, Qing Huc,*

a School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China

b Department of Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042, Romanian

c Southern University of Science and b Technology, Shenzhen, Guangdong, 518055, P. R. China.

Figure S1. Pore diameter distribution of the nickel foam.
Figure S2. Statistical analysis of the length (a) and width (b) of the spindelike β-Ni(OH)$_2$ nanorods prepared by hydrothermal growth in H$_2$O$_2$ solution.
Figure S3. The variation of UV-Vis spectra of the MO solution as a function of time during galvanostatic degradation at current density of 0.50 mA·cm$^{-2}$.