Supporting information

Bi-functional heterogeneous catalysts for carbon dioxide conversion: enhanced performances at low temperature

Adrien Comès, Xavier Collard, Luca Fusaro, Luciano Atzori, M. Giorgia Cutrufello and Carmela Aprile *
Contents:

1. TEM images of XS-MCM-41 (a), XS-Sn (b) and XS-Zn (c)
2. Small angle XRD pattern XS-MCM-41, XS-MCM-41-Imi, XS-Sn, XS-Sn-Imi, XS-Zn and XS-Zn-Imi
3. N$_2$ ads-des and pore size distribution of XS-MCM-41, XS-Sn and XS-Zn
4. 13C- and 29Si-CPMAS-NMR of XS-MCM-41-Imi and XS-Zn-Imi
5. N$_2$ ads-des and pore size distribution of XS-MCM-41 and XS-MCM-41-Imi
S1: TEM images of XS-MCM-41 (a), XS-Sn (b) and XS-Zn (c)

S2: Small angle XRD pattern of XS-MCM-41, XS-MCM-41-Imi, XS-Sn, XS-Sn-Imi, XS-Zn and XS-Zn-Imi
S3 N₂ adsorption-desorption isotherm of XS-MCM-41, XS-Sn and XS-Zn and the corresponding pore size distribution determined via BJH method.
S4 13C-CPMAS-NMR of XS-MCM-41-Imi (up-left) and XS-Zn-Imi (up-right) and 29Si-CPMAS-NMR of XS-MCM-41-Imi (down-left) and XS-Zn-Imi (down-right)
N_2 adsorption-desorption isotherm of XS-MCM-41 (up-left) and XS-MCM-41-Imi (down-left) and pore size distribution determined via BJH method of XS-MCM-41 (up-right) plus pore size distribution determined via HK method of XS-MCM-41-Imi (down-right)