Supporting Information

Andrographolide-loaded silk fibroin nanoparticles

XU Zhongyu, REN Jiangmeng, JING Qiufang, REN Fuzheng, Huang Mengting, Ding Wenrui and ZENG Bubing.

School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Figure S1 general production of RSF nanoparticles

Table S1 infrared spectroscopy data of different silk fibroin status

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amides I (cm⁻¹)</th>
<th>Amides II (cm⁻¹)</th>
<th>Amides III (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-sheet</td>
<td>1625-1640</td>
<td>1515-1525</td>
<td>1265</td>
</tr>
<tr>
<td>α-helices</td>
<td>1650-1658</td>
<td>1545</td>
<td>1240</td>
</tr>
<tr>
<td>Random coil</td>
<td>1640-1648</td>
<td>1535-1545</td>
<td>1235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>RSF concen</th>
<th>AP concen</th>
<th>mPEGN H₂(g%)</th>
<th>ethanol : RSF vol</th>
<th>freezing time (h)</th>
<th>volume-mean diameter (nm)</th>
<th>variance (P.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>2</td>
<td>5%</td>
<td>0.2</td>
<td>5</td>
<td>528.2</td>
<td>0.108</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>4</td>
<td>10%</td>
<td>0.25</td>
<td>10</td>
<td>423.9</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>6</td>
<td>20%</td>
<td>0.4</td>
<td>20</td>
<td>332.0</td>
<td>0.107</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>7</td>
<td>30%</td>
<td>0.5</td>
<td>24</td>
<td>947.7</td>
<td>0.664</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>10%</td>
<td>0.4</td>
<td>24</td>
<td>322.8</td>
<td>0.097</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5%</td>
<td>0.5</td>
<td>20</td>
<td>996.9</td>
<td>0.410</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>30%</td>
<td>0.2</td>
<td>10</td>
<td>378.7</td>
<td>0.412</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>7</td>
<td>20%</td>
<td>0.25</td>
<td>5</td>
<td>623.0</td>
<td>0.477</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>20%</td>
<td>0.5</td>
<td>10</td>
<td>>1000</td>
<td>/</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4</td>
<td>30%</td>
<td>0.4</td>
<td>5</td>
<td>238.9</td>
<td>0.312</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>6</td>
<td>5%</td>
<td>0.25</td>
<td>24</td>
<td>503.4</td>
<td>0.333</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>7</td>
<td>10%</td>
<td>0.2</td>
<td>20</td>
<td>893.9</td>
<td>0.254</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>2</td>
<td>30%</td>
<td>0.25</td>
<td>20</td>
<td>495.7</td>
<td>0.479</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>4</td>
<td>20%</td>
<td>0.2</td>
<td>24</td>
<td>495.7</td>
<td>0.479</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>6</td>
<td>10%</td>
<td>0.5</td>
<td>5</td>
<td>>1000</td>
<td>/</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>7</td>
<td>5%</td>
<td>0.4</td>
<td>10</td>
<td>372.0</td>
<td>0.172</td>
</tr>
</tbody>
</table>
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:
- Mean Diameter: 528.2 nm
- Std. Deviation: 173.8 nm (32.9%)
- Norm. Std. Dev.: 0.329
- Variance (P.I.): 0.108
- Chi Squared: 2.556
- Baseline Adj.: 0.000%
- Z-Avg. Diff. Coeff.: 9.78E-009 cm²/s

Figure S2. AP-loaded RSF nanoparticles sizing distribution of No.1

Run_Sample

Cumulative Result:
- 25% of distribution < 400.6 nm
- 50% of distribution < 500.1 nm
- 75% of distribution < 624.4 nm
- 90% of distribution < 762.4 nm
- 99% of distribution < 1075.1 nm
- 60% of distribution < 659.7 nm
Figure S3. AP-loaded RSF nanoparticles sizing distribution of No.2
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:
- Mean Diameter = 332.0 nm
- Std. Deviation = 108.5 nm (32.7%)
- Norm. Std. Dev. = 0.327 (Coeff. of Var’n)
- Variance (P.I.) = 0.107
- Chi Squared = 4.371
- Baseline Adj. = 0.918 %
- Z-Avg. Diff. Coeff. = 1.46E-008 cm²/s

![Volume-Weighted Gaussian Distribution](image)

Cumulative Result:
- 25 % of distribution < 252.3 nm
- 50 % of distribution < 314.5 nm
- 75 % of distribution < 392.1 nm
- 90 % of distribution < 478.2 nm
- 99 % of distribution < 673.0 nm
- 80 % of distribution < 414.1 nm

Figure S4. AP-loaded RSF nanoparticles sizing distribution of No.3
Figure S5. AP-loaded RSF nanoparticles sizing distribution of No.4
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:
- Mean Diameter = 322.8 nm
- Stnd. Deviation = 100.4 nm (31.1%)
- Norm. Stnd. Dev. = 0.311
- Variance (P.I.) = 0.097
- Chi Squared = 64.604
- Baseline Adj. = 1.099 %
- Z-Avg. Diff. Coeff. = 1.51E-008 cm2/s

Cumulative Result:
- 25% of distribution < 249.2 nm
- 50% of distribution < 307.3 nm
- 75% of distribution < 379.1 nm
- 90% of distribution < 457.8 nm
- 99% of distribution < 633.6 nm
- 80% of distribution < 399.3 nm

Figure S6. AP-loaded RSF nanoparticles sizing distribution of No.5
Figure S7. AP-loaded RSF nanoparticles sizing distribution of No.6
Figure S8. AP-loaded RSF nanoparticles sizing distribution of No.7
Gaussian Summary:

- **Mean Diameter**: 623.0 nm
- **Variance (P.I.)**: 0.477
- **Std. Deviation**: 430.5 nm (69.1%)
- **Chi Squared**: 52.596
- **Norm. Std. Dev.**: 0.691
- **Baseline Adj.**: 0.000 %
- **(Coeff. of Var’n)**: Z-Avg. Diff. Coeff. = 9.60E-009 cm²/s

Run_Sample

Cumulative Result:
- 25% of distribution < 308.1 nm
- 50% of distribution < 490.6 nm
- 75% of distribution < 781.4 nm
- 90% of distribution < 1167.5 nm
- 99% of distribution < 2419.7 nm
- 80% of distribution < 876.9 nm

Figure S9. AP-loaded RSF nanoparticles sizing distribution of No.8
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Diameter</td>
<td>8693.5 nm</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>7589.4 nm (87.3%)</td>
</tr>
<tr>
<td>Norm. Std. Dev. (Coef. of Var’n)</td>
<td>0.873</td>
</tr>
<tr>
<td>Variance (P.I.)</td>
<td>0.752</td>
</tr>
<tr>
<td>Chi Squared</td>
<td>17254.455</td>
</tr>
<tr>
<td>Baseline Adj.</td>
<td>0.000 %</td>
</tr>
<tr>
<td>Z-Avg. Diff. Coeff.</td>
<td>1.07E-009 cm²/s</td>
</tr>
</tbody>
</table>

Run_Sample

Cumulative Result:

- 25% of distribution < 3284.3 nm
- 50% of distribution < 5877.6 nm
- 75% of distribution < 10467.6 nm
- 90% of distribution < 17322.9 nm
- 99% of distribution < 34935.6 nm
- 99.9% of distribution < 12052.8 nm

Figure S10. AP-loaded RSF nanoparticles sizing distribution of No.9
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:
- Mean Diameter = 238.9 nm
- Variance (P.I.) = 0.312
- Std. Deviation = 133.5 nm (55.9%)
- Chi Squared = 2006.459
- Norm. Std. Dev. = 0.559
- Baseline Adj. = 0.058 %
- Z-Avg. Diff. Coeff. = 1.62E-009 cm2/s

![Volume-weighted Gaussian Distribution](image)

Cumulative Result:
- 25% of distribution < 140.2 nm
- 50% of distribution < 204.3 nm
- 75% of distribution < 297.8 nm
- 90% of distribution < 418.1 nm
- 99% of distribution < 749.7 nm
- 80% of distribution < 327.0 nm

Figure S11. AP-loaded RSF nanoparticles sizing distribution of No.10
Figure S12. AP-loaded RSF nanoparticles sizing distribution of No.11
Figure S13. AP-loaded RSF nanoparticles sizing distribution of No.12
Figure S14. AP-loaded RSF nanoparticles sizing distribution of No.13
Figure S15. AP-loaded RSF nanoparticles sizing distribution of No.14
VOLUME-Weighted GAUSSIAN DISTRIBUTION Analysis (Solid Particle)

GAUSSIAN SUMMARY:

- Mean Diameter = 372.0 nm
- Variance (P.I.) = 0.172
- Std. Deviation = 154.4 nm (41.5%)
- Chi Squared = 76.511
- Norm. Std. Dev. = 0.415
- Baseline Adj. = 1.084 %
- (Coeff. of Var'n)
- Z-Avg. Diff. Coeff. = 1.36E-008 cm2/s

Cumulative Result:

- 25 % of distribution < 257.8 nm
- 50 % of distribution < 341.1 nm
- 75 % of distribution < 451.2 nm
- 90 % of distribution < 580.5 nm
- 99 % of distribution < 895.6 nm
- 99.5 % of distribution < 483.7 nm

Figure S16. AP-loaded RSF nanoparticles sizing distribution of No.16
Figure S17 Standard curve of AP by HPLC
Figure S18 HPLC of AP-loaded RSF nanoparticle
Figure S19 FT-IR spectra of RSFNPs1

Figure S20 FT-IR spectra of RSFNPs2
Figure S21 FT-IR spectra of RSFNPs3

Figure S22 FT-IR spectra of RSFNPs4
Figure S23 FT-IR spectra of RSFNP5

Figure S24 FT-IR spectra of RSFNP6
Figure S25 FT-IR spectra of RSF

Figure S26 FT-IR spectra of mPEGNH$_2$
Figure S27 FT-IR spectra of AP

Figure S28 FT-IR spectra of physical mixture of AP, PEG and RSFNPs