Palladium-Catalyzed Direct C(sp3)-H Arylation of Indole-3-ones with Aryl Halides: A Novel and Efficient Method for the Synthesis of Nucleophilic 2-Monoarylated Indole-3-ones

Yong-Long Zhao, a, * Yong-Qin Tang, a Xing-Hai Fei, a Tao Xiao, a Ya-Dong Lu, a Xiao-Zhong Fu, a Bin He, a Meng Zhou, a Chun Li, a Peng-Fei Xu, b, * and Yuan-Yong Yang a, *

a State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China.

b State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.

*Corresponding authors: E-mail addresses: zhaoyl05@126.com; xupf@lzu.edu.cn; 312854015@qq.com

Contents:
1. General Information ... S2
2. Preparation of Substrates .. S2
3. General procedure for the Direct C(sp3)-H Arylation of Indole-3-ones with Aryl Halides ... S2
4. Analytical Data of 3a–p .. S3
References .. S7
NMR Spectra ... S8
1. General Information
Chemicals and solvents were either purchased from commercial suppliers or purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in ethanol followed by heating. Flash chromatography was carried out utilizing silica gel (200-300 mesh). 1H NMR, 13C NMR spectra were recorded on a Varian Mercury 400 spectrometer (400 MHz 1H, 100 MHz 13C). The spectra were recorded in CDCl$_3$ as the solvent at room temperature, 1H and 13C NMR chemical shifts are reported in ppm relative to either the residual solvent peak (13C) ($\delta = 77.00$ ppm) or TMS (1H) ($\delta = 0$ ppm) as an internal standard. Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for 13C NMR are reported as chemical shift. HRMS were performed on a Thermofisher (Vanquish (UPLC) — Q-Exactive Plus) mass instrument (ESI).

2. Preparation of Substrates
Substrates 1 were prepared by following the publish procedures $^{[1-3]}$

\[
\begin{align*}
\text{R}^1 \quad \text{COOH} & \quad \text{NH}_2 & + & \text{Br} \quad \text{COOH} & \quad \stackrel{1)}{\text{NaOH}} & \quad \text{R}^1 \quad \text{COOH} & \quad \stackrel{2)}{\text{HCl}} & \quad \text{R}^1 \quad \text{COOH} \\
\text{R}^1 & \quad \text{N} & + & \text{Br} & \quad \text{COOH} & \quad \stackrel{1)}{\text{NaOH}} & \quad \text{R}^1 \quad \text{COOH} & \quad \stackrel{2)}{\text{HCl}} & \quad \text{R}^1 \quad \text{COOH} \\
\text{R}^1 & \quad \text{N} & & & & & & & \\
\end{align*}
\]

3. General procedure for the Direct C(sp3)-H Arylation of Indole-3-ones with Aryl Halides

Indole-3-ones 1 (0.25 mmol), Pd(dba)$_2$ (0.005 mmol, 4.6 mg), K$_2$CO$_3$ (0.275 mmol, 38 mg, 1.1 equiv.) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl L3 (0.07 mmol, 3.3 mg) were added to a Schlenk tube equipped with a stir bar. Then sealed with a rubber septum and vacuum purged five times with high pure nitrogen to remove air. To these solids, aryl halides 2 (0.275 mmol, 1.1 equiv.) and fresh distilled degassed THF (2 ml) or Toluene (1 ml) was added consecutively under a positive
flow of high pure nitrogen. The reaction mixture was stirred at 70 °C or 110 °C. After the required period of time, the reaction was complete (as judged by TLC analysis). The reaction mixture was directly purified by flash column chromatography (eluted with petroleum ether/EtOAc = 15:1 to 10:1) to afford the C-2 aryl indole-3-ones 3.

4. Analytical data of 3a–p

![Chemical structure of 3a](image)

1-Acetyl-2-phenylindolin-3-one (3a). White solid; Reaction time: 14 h; Yield: 87%; m. p.: 125-126 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.62 (d, \(J = 8.8\) Hz, 1H), 7.90 – 7.50 (m, 2H), 7.30 – 7.25 (m, 3H), 7.23 – 7.10 (m, 3H), 5.12 (s, 1H), 1.99 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 195.2, 169.6, 154.1, 137.9, 134.7, 129.8, 129.0, 126.0, 125.0, 123.0, 118.8, 69.8, 24.9; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{16}\)H\(_{14}\)NO\(_2\): 252.10191, found [M+H]\(^+\): 252.10171.

![Chemical structure of 3b](image)

1-Acetyl-2-(4-methoxyphenyl)indolin-3-one (3b). White solid; Reaction time: 14 h; Yield: 95%; m. p.: 138-139 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.68 (d, \(J = 8.8\) Hz, 1H), 7.80 – 7.60 (m, 2H), 7.35 – 7.20 (m, 2H), 6.90 – 6.78 (m, 3H), 5.16 (s, 1H), 3.78 (s, 3H), 2.08 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 195.0, 169.6, 154.0, 137.8, 136.1, 130.8, 124.9, 123.0, 118.7, 118.0, 114.0, 111.9, 69.7, 55.5, 24.8; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{17}\)H\(_{16}\)NO\(_3\): 282.11247, found [M+H]\(^+\): 282.11228.

![Chemical structure of 3c](image)

1-Acetyl-2-(3-methoxyphenyl)indolin-3-one (3c). Pale yellow solid; Reaction time: 14 h; Yield: 49%; m. p.: 135-136 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.61 (d, \(J = 8.4\) Hz, 1H), 7.70 – 7.60 (m, 2H), 7.25 – 7.14 (m, 2H), 6.88 – 6.68 (m, 3H), 5.09 (s, 1H), 3.71 (s, 3H), 2.01 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 195.0, 169.6, 160.6, 154.0, 137.8, 133.2, 130.8, 125.0, 118.7, 118.1, 114.1, 112.0, 69.8, 55.5, 24.8; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{17}\)H\(_{16}\)NO\(_3\): 282.11247, found [M+H]\(^+\): 282.11224.

![Chemical structure of 3d](image)

1-Acetyl-2-(2-methoxyphenyl)indolin-3-one (3d). White solid;
Reaction time: 14 h; Yield: 50%; m. p.: 152-153 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.66 (d, \(J = 6.8\) Hz, 1H), 7.85 – 7.65 (m, 2H), 7.35 – 7.18 (m, 2H), 7.08 – 6.77 (m, 3H), 5.72 (s, 1H), 3.83 (s, 3H), 2.03 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 196.5, 169.6, 157.4, 154.2, 137.4, 130.2, 127.3, 124.6, 124.5, 124.0, 121.5, 118.6, 112.1, 64.5, 56.2, 24.5; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{17}\)H\(_{16}\)NO\(_3\): 282.11247, found [M+H]\(^+\): 282.11225.

1-Acetyl-2-mesitylindolin-3-one (3e). Yellow solid; Reaction time: 14 h; Yield: 26%; m. p.: 120-121 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.59 (s, 1H), 7.74 – 7.60 (m, 2H), 7.24 – 7.15 (m, 1H), 6.90 (s, 1H), 6.69 (s, 1H), 5.59 (s, 1H), 2.47 (s, 3H), 2.19 (s, 3H), 1.89 (s, 3H), 1.72 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 196.3, 169.7, 153.7, 153.6, 137.6, 131.4, 130.1, 129.4, 124.5, 124.3, 123.7, 66.6, 24.3, 21.2, 21.0, 20.0; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{19}\)H\(_{20}\)NO\(_2\): 294.14886, found [M+H]\(^+\): 294.14877.

1-Acetyl-2-(2-fluorophenyl)indolin-3-one (3f). White solid; Reaction time: 14 h; Yield: 43%; m. p.: 140-141 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.60 (d, \(J = 8.0\) Hz, 1H), 7.82 – 7.53 (m, 2H), 7.32 – 7.23 (m, 1H), 7.23 – 7.17 (m, 1H), 7.16 – 7.07 (m, 1H), 7.06 – 7.00 (m, 1H), 6.99-6.89 (m, 1H), 5.53 (s, 1H), 1.99 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 194.9, 169.2, 161.9, 159.4, 154.2, 147.7, 147.2, 137.8, 125.2, 124.9, 124.8, 124.6, 122.7, 122.5, 118.7, 116.8, 116.6, 63.5, 24.4; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{15}\)H\(_{13}\)FNO\(_2\): 270.09248, found [M+H]\(^+\): 270.09270.

Methyl 4-(1-acetyl-3-oxoindolin-2-yl)benzoate (3g). White solid; Reaction time: 14 h; Yield: 88%; m. p.: 147-148 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.67 (d, \(J = 7.6\) Hz, 1H), 8.04 (d, \(J = 8.2\) Hz, 2H), 7.73 (t, \(J = 8.2\) Hz, 2H), 7.35 (d, \(J = 8.3\) Hz, 2H), 7.29 – 7.24 (m, 1H), 5.24 (s, 1H), 3.89 (s, 3H), 2.02 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 194.3, 169.4, 166.6, 154.0, 139.5, 138.1, 131.0, 126.1, 125.3, 125.2, 125.1, 122.8, 118.9, 69.5, 52.6, 24.8; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{18}\)H\(_{16}\)NO\(_4\): 310.10738, found [M+H]\(^+\): 310.10714.
4-(1-Acetyl-3-oxoindolin-2-yl)benzaldehyde (3h). White solid; Reaction time: 14 h; Yield: 63%; m. p.: 157-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.70 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.80-7.70 (m, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.40 – 7.17 (m, 1H), 5.33 (s, 1H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.0, 191.6, 169.2, 154.0, 141.1, 138.2, 136.7, 131.0, 130.6, 126.7, 125.3, 125.1, 122.7, 118.8, 69.4, 24.8; HRMS (ESI): calculated [M+H]⁺ for C₁₇H₁₄NO₃: 280.09682, found [M+H]⁺: 280.09641.

1-Acetyl-2-(4-chloro-3-fluorophenyl)indolin-3-one (3i). White solid; Reaction time: 14 h; Yield: 42%; m. p.: 141-142 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 7.80 – 7.60 (m, 2H), 7.38 – 7.24 (m, 2H), 7.24 – 7.08 (m, 2H), 5.15 (s, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 169.2, 159.8, 157.3, 138.2, 131.9, 128.3, 128.0, 125.9, 125.3, 118.1, 117.9, 68.5, 24.9; HRMS (ESI): calculated [M+H]⁺ for C₁₆H₁₂ClFNO₂: 304.05351, found [M+H]⁺: 304.05351.

1-Acetyl-2-(3,4-dichlorophenyl)indolin-3-one (3j). White solid; Reaction time: 14 h; Yield: 28%; m. p.: 112-113 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1H), 7.75 – 7.60 (m, 2H), 7.50-7.35 (m, 1H), 7.23 – 7.16 (m, 1H), 7.13 – 6.98 (m, 1H), 5.08 (s, 1H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.1, 169.2, 159.8, 157.3, 138.2, 131.9, 128.3, 128.0, 125.9, 125.3, 118.1, 117.9, 68.5, 24.9; HRMS (ESI): calculated [M+H]⁺ for C₁₆H₁₂Cl₂NO₂: 320.02396, found [M+H]⁺: 320.02396.

2-(1,1'-biphenyl-3-yl)-1-acetylindolin-3-one (3k). White solid; Reaction time: 14 h; Yield: 72%; m. p.: 160-161 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (d, J = 6.8 Hz, 1H), 7.91 – 7.47 (m, 4H), 7.47 – 7.26 (m, 5H), 7.25 – 7.15 (m, 2H), 6.86 (d, J = 6.8 Hz, 1H), 5.36 (s, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.7, 169.6, 154.4, 142.9, 140.0, 137.8, 133.0, 128.7, 128.4, 127.9, 124.8, 124.5, 123.4, 118.6, 65.7, 24.6; HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₈NO₂:
328.13321, found [M+H]+: 328.13318.

1-Acetyl-2-(naphthalen-2-yl)indolin-3-one (3l). White solid; Reaction time: 14 h; Yield: 53%; m. p.: 130-131 ºC; 1H NMR (400 MHz, CDCl3): δ 8.72 (d, J = 8.4 Hz, 1H), 7.87 – 7.73 (m, 5H), 7.52 – 7.45 (m, 2H), 7.40 – 7.25 (m, 2H), 5.34 (s, 1H), 2.07 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 195.2, 169.8, 154.0, 137.9, 133.6, 133.5, 132.0, 130.0, 128.6, 128.2, 128.1, 128.0, 127.0, 126.8, 125.5, 125.1, 124.9, 118.8, 69.9, 24.9; HRMS (ESI): calculated [M+H]+ for C20H16NO2: 302.11756, found [M+H]+: 302.11730.

1-Acetyl-2-(benzo[b]thiophen-5-yl)indolin-3-one (3m). Yellow solid; Reaction time: 14 h; Yield: 41%; m. p.: 160-161 ºC; 1H NMR (400 MHz, CDCl3): δ 8.66 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.75 – 7.60 (m, 3H), 7.41 (d, J = 5.2 Hz, 1H), 7.28 – 7.13 (m, 3H), 5.24 (s, 1H), 2.00 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 196.3, 169.7, 154.1, 140.4, 140.3, 137.9, 130.9, 129.0, 128.2, 125.1, 124.0, 123.9, 121.8, 121.1, 118.8, 69.8, 24.9; HRMS (ESI): calculated [M+H]+ for C18H14NO2S: 308.07398, found [M+H]+: 308.07397.

1-Acetyl-5-methyl-2-phenylindolin-3-one (3n). White solid; Reaction time: 14 h; Yield: 32%; m. p.: 155-156 ºC; 1H NMR (400 MHz, CDCl3): δ 8.50 (d, J = 8.4 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.33 – 7.25 (m, 3H), 7.21 – 7.14 (m, 2H), 5.11 (s, 1H), 2.32 (s, 3H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 195.2, 169.3, 152.3, 147.3, 139.0, 135.0, 134.9, 129.7, 129.0, 126.0, 124.2, 123.2, 119.3, 118.5, 70.1, 24.7, 21.0; HRMS (ESI): calculated [M+H]+ for C17H16NO2: 266.11756, found [M+H]+: 266.11743.

1-Acetyl-5-chloro-2-phenylindolin-3-one (3o). White solid; Reaction time: 14 h; Yield: 91%; m. p.: 155-156 ºC; 1H NMR (400 MHz, CDCl3): δ 8.59 (d, J = 8.4 Hz, 1H), 7.69 – 7.53 (m, 2H), 7.39 – 7.24 (m, 3H), 7.24 – 7.15 (m, 2H), 5.16 (s, 1H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.0, 169.5, 152.4, 147.3, 139.0, 135.0, 134.9, 129.7, 129.0, 126.0, 124.2, 123.2, 119.3, 118.5, 70.1, 24.7, 21.0; HRMS (ESI): calculated [M+H]+ for C16H13ClNO2: 286.06293, found [M+H]+: 286.06286.
1-Acetyl-5-bromo-2-phenylindolin-3-one (3p). White solid; Reaction time: 14 h; Yield: 53%; m. p.: 155-156 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.61 (d, \(J = 8.0\) Hz, 1H), 7.90 – 7.75 (m, 2H), 7.45 – 7.30 (m, 3H), 7.28 – 7.15 (d, \(J = 6.9\) Hz, 2H), 5.22 (s, 1H), 2.06 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 193.8, 169.5, 147.3, 140.4, 134.2, 130.3, 129.9, 129.6, 127.6, 126.0, 124.2, 120.4, 118.0, 70.1, 24.8; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{16}\)H\(_{13}\)BrNO\(_2\): 330.01242, found [M+H]\(^+\): 330.01256.

1-Acetyl-2-(4-chlorophenyl)indolin-3-one (3q). White solid; Reaction time: 14 h; Yield: 40%; m. p.: 120-121 °C; \(^1\)HNMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.68 (d, \(J = 5.4\) Hz, 1H), 7.77 – 7.60 (m, 2H), 7.36 (d, \(J = 8.4\) Hz, 2H), 7.28 – 7.20 (m, 3H), 5.17 (s, 1H), 2.07 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 194.7, 169.3, 154.0, 138.0, 135.1, 133.3, 130.0, 127.4, 125.2, 122.9, 118.9, 69.2, 24.8; HRMS (ESI): calculated [M+H]\(^+\) for C\(_{16}\)H\(_{13}\)ClNO\(_2\): 286.06293, found [M+H]\(^+\): 286.06286.

References

NMR spectrogram