Supporting information

For
New magnetic nanoparticle-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the synthesis of benzoxanthenes and pyrroles under solvent-free sonication.
Hai Truong Nguyen, Ngoc-Phuong Thi Le, Duy-Khiem Nguyen Chau and Phuong Hoang Tran*

Department of Organic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City 721337, Viet Nam.
*Corresponding author: thphuong@hcmus.edu.vn

Table of contents

Section S1. Chemicals, supplies and instruments S1-S2
Section S2. General procedure S2-S3
Section S3. Optimization of the reaction condition S4-S8
Section S4. Spectral data S9-S26
Section S5. 1H, 13C NMR and HRMS spectroscopy S27-S76
Section S6. References S77-S79
Section S1. Chemicals, supplies and instruments

Chemicals and supplies
4-tert-Butylbenzaldehyde (assay 97%), 4-fluorobenzaldehyde (assay 98%), 4-chlorobenzaldehyde (assay 97%), 4-bromobenzaldehyde (grade reagentPlus®, assay 99%), 3-chlorobenzaldehyde (assay 97%), 3-bromobenzaldehyde (assay 97%), 2-chlorobenzaldehyde (assay 99%), 2-bromobenzaldehyde (assay 98%), salicylaldehyde (reagent grade, assay 98%), 2-nitrobenzaldehyde (assay 98%), cyclohexane-carbaldehyde (assay 97%), benzo[d][1,3]dioxole-5-carbaldehyde (piperonal, assay 99%), 2-hydroxy-5-methylbenzaldehyde (assay 98%), 2-hydroxy-5-nitrobenzaldehyde (assay 98%), 4-(dimethylamino)benzaldehyde (ACS reagent, assay 99%), aniline (ACS reagent, ≥ 99.5%), o-toluidine (assay ≥ 99%), 3,5-dichoroaniline (assay ≥ 98%), 2,5-dichoroaniline (assay ≥ 99%), 3,4-dichoroaniline (assay ≥ 99%), 2,5-dibromoaniline (assay ≥ 98%), triethylenetetramine (assay ≥ 97.0% (T)), tetraethylenepent-amine (technical grade), phenylhydrazine (assay 97%), 2,4-dinitrophenylhydrazine (reagent grade, 97%), 4-nitroaniline (assay ≥ 99%), 4-nitro-o-phenylenediamine (assay 98%), 2-amino-4-nitrophenol (assay ≥ 99.0% (NT)), 2-amino-p-cresol (assay 97%), 4-aminobenzonitrile (assay 98%), 4-iodoaniline (assay 98%), 2-aminobiphenyl (assay 97%), methyl 4-aminobenzoate (assay 98%), and 4-aminophenol (assay 99%), 2,4-dinitroaniline (assay 98%), 4-amino-3-hydroxybenzoic acid (assay 97%) were obtained from Sigma-Aldrich. Butyraldehyde (for synthesis), benzaldehyde (for synthesis), 4-methylbenzaldehyde (for synthesis), 2-naphthol (for synthesis), cinnam-aldehyde (for synthesis) were obtained from Merck.

Analytical techniques
The 1H and 13C NMR spectra were recorded on a Bruker Advance 500 instruments using CDCl$_3$ as solvent and solvent peaks or TMS as internal standards. HRMS (ESI) data were collected using Bruker micrOTOF-QII MS at 80 eV. FT-IR spectra were recorded in the form of KBr pellets by a Bruker Vertex 70. GC-MS analyses were performed on an Agilent GC system 7890 equipped with a mass selective detector Agilent 5973N and a capillary DB-5MS column (30m x 250 µm x 0.25
µm). Analytical thin-layer chromatography (TLC) was acquired on F-254 silica gel coated aluminum plates from Merck. Silica gel column chromatography was carried out with silica gel (60, 230-400 mesh) from Merck. Thermal gravimetric analysis (TGA) was obtained using a TA Q500 thermal analysis system with the sample held in a platinum pan in a continuous airflow. Ultrasonic irradiation-assisted reactions were performed on an Elma sonic S30H Ultrasonic cleaning unit at the frequency of 37 kHz. Raman spectra were recorded on a Horiba Xplora One using a 532 nm argon ion laser. ICP-MS was recorded on a PerkinElmer 350X. Scanning electron microscope (SEM) was performed on an S4800 Hitachi, Japan. The electron diffraction spectroscopy (EDS) was conducted on a Horiba H7593. ICP-OES was recorded on a PerkinElmer 350X.

Section S2. General procedure

Preparation of magnetic Fe₃O₄ nanoparticle (MNPs)

MNP was synthesized by simple co-precipitation of ferric and ferrous ions in an alkaline condition. Typically, FeCl₃.6H₂O (20 mmol) and FeSO₄.7H₂O (10 mmol) were dissolved in 100 mL deionized water. The mixture was stirred at 80 °C and then KOH (12 mmol) was added and stirred continuously within 2 h. The black precipitate, after being collected by a permanent magnet, was washed with water (3 x 100 mL) and ethanol (3 x 50 mL). This MNP material was dried at 60-70 °C under vacuo for 1 h.

General procedure for the synthesis of LAIL@MNP

The imidazolium chloride ionic liquid was synthesized according to a procedure reported in the literature. A mixture of 3-chloroethoxy-propylsilane (5.0 mmol, 1.2 mL) and imidazole (5.0 mmol, 0.34 g) was stirred at reflux for 17 h. The ionic liquid obtained as a yellowish viscous liquid was diluted in 50 mL of ethanol-water (1:1 volume ratio) solution. To the freshly prepared suspension of MNP material in 100 mL of 1:1 ethanol-water was added the above ionic liquid solution and the mixture was sonicated at 40 °C for 4 h. The resultant IL@MNP was washed with dichloromethane and dried at 70 °C in vacuo. To synthesize LAIL@MNP, a mixture of IL@MNP (1.0 g) and ZnCl₂ (1.0 mmol) in ethanol (50 mL) was refluxed for 24 h. After cooling to room temperature, the catalyst was separated by a magnet,
washed with ethanol, and dried at 100 °C for 5 h. The LAIL@MNP was characterized by FT-IR, SEM, TEM, TGA, Raman, and SEM-EDS. The loading amount of Zn metal was determined based on ICP-OES.

General procedure for one-pot multicomponent reaction

A mixture of 2-naphthol (1.0 mmol, 0.144 g), benzaldehyde (1.0 mmol, 0.106 g), dimesdone (1.0 mmol, 0.140 g) was reacted under solvent-free sonication in the presence of LAIL@MNP (15 mg) at 80 °C for 30 min. Upon completion of the reaction (monitored by TLC), ethyl acetate (15 mL) was added and the solid catalyst was removed from organic solution by a magnet. The catalyst was washed with ethyl acetate (2 x 5 mL) followed by ethanol (3 x 5 mL) and then reused for next cycles after drying under vacuum. Meanwhile, the organic solution was dried over MgSO₄ and then concentrated under reduced pressure. The resultant crude product was recrystallized from ethanol to yield pure benzoxanthene whose structure was by ¹H and ¹³C NMR.

General procedure for Paal-Knorr reaction

A mixture of aniline (1.0 mmol), acetonylacetone (1.2 mmol) and LAIL@MNP (15 mg) was reacted under solvent-free sonication for an appropriate time. Upon completion of the reaction (monitored by TLC and GC), ethyl acetate (15 mL) was added and the solid catalyst was removed from the organic solution by a magnet. The catalyst was washed with ethyl acetate (2 x 5 mL) followed by ethanol (3 x 5 mL) and then reused for next cycles after drying under vacuum. Meanwhile, the organic solution was dried over MgSO₄ and the solvent was removed by a rotary evaporator. The crude product was purified through silica gel chromatography using ethyl acetate–hexane (1:9). The purified pyrrole was then characterized by ¹H and ¹³C NMR, GC-MS or HRMS (ESI).
Section S3. Optimization of the reaction condition

Table S1. Optimization of reaction conditionsa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Catalyst loading (mg)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r.t.</td>
<td>1</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>r.t.</td>
<td>5</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>r.t.</td>
<td>10</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>r.t.</td>
<td>15</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>r.t.</td>
<td>20</td>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>r.t.</td>
<td>25</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>r.t.</td>
<td>30</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>r.t.</td>
<td>45</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>r.t.</td>
<td>60</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>r.t.</td>
<td>90</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>r.t.</td>
<td>120</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>1</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>5</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>10</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>15</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>20</td>
<td>15</td>
<td>66</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>25</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>80</td>
<td>30</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>19</td>
<td>80</td>
<td>45</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>60</td>
<td>15</td>
<td>95</td>
</tr>
<tr>
<td>21</td>
<td>80</td>
<td>90</td>
<td>15</td>
<td>97</td>
</tr>
<tr>
<td>22</td>
<td>80</td>
<td>120</td>
<td>15</td>
<td>99</td>
</tr>
<tr>
<td>23</td>
<td>80</td>
<td>30</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>30</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td>77</td>
</tr>
<tr>
<td>Entry</td>
<td>Temperature (°C)</td>
<td>Time (min)</td>
<td>Catalyst loading (mg)</td>
<td>Yieldb (%)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>80</td>
<td>30</td>
<td>10</td>
<td>81</td>
</tr>
<tr>
<td>27</td>
<td>80</td>
<td>30</td>
<td>20</td>
<td>97</td>
</tr>
<tr>
<td>28</td>
<td>80</td>
<td>30</td>
<td>25</td>
<td>99</td>
</tr>
<tr>
<td>29</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>30</td>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>31</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>30</td>
<td>100</td>
<td>99</td>
</tr>
</tbody>
</table>

*aReaction condition: 2-naphthol, dimedone, and benzaldehyde in the presence of LAIL@MNP.

*bIsolated yields.

Table S2. Effect of catalysts and solvents.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solventb</th>
<th>Yieldc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[BMIM]PF<sub>6</sub></td>
<td>Solvent-free</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>[EMIM]Cl</td>
<td>Solvent-free</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>[BMIM]OTf</td>
<td>Solvent-free</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>[TMSPIM]<sup>d</sup></td>
<td>Solvent-free</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>AlCl<sub>3</sub></td>
<td>Solvent-free</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>FeCl<sub>3</sub></td>
<td>Solvent-free</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>CuCl<sub>2</sub></td>
<td>Solvent-free</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>HfCl<sub>4</sub></td>
<td>Solvent-free</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>ZnCl<sub>2</sub></td>
<td>Solvent-free</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>Solvent-free</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>Solvent-free</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>MgO</td>
<td>Solvent-free</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>CuO</td>
<td>Solvent-free</td>
<td>63</td>
</tr>
<tr>
<td>14</td>
<td>Cu<sub>2</sub>O</td>
<td>Solvent-free</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>ZnO</td>
<td>Solvent-free</td>
<td>69</td>
</tr>
<tr>
<td>16</td>
<td>CuFe<sub>2</sub>O<sub>4</sub></td>
<td>Solvent-free</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>ZnFe<sub>2</sub>O<sub>4</sub></td>
<td>Solvent-free</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>γ-Fe<sub>2</sub>O<sub>3</sub></td>
<td>Solvent-free</td>
<td>64</td>
</tr>
<tr>
<td>Entry</td>
<td>Catalyst</td>
<td>Solvent</td>
<td>Yield (%)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>19</td>
<td>Nano Fe$_3$O$_4$</td>
<td>Solvent-free</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>None</td>
<td>Solvent-free</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>LAIL@MNP</td>
<td>Solvent-free</td>
<td>96</td>
</tr>
<tr>
<td>22</td>
<td>LAIL@MNP</td>
<td>Butan-2-ol</td>
<td>42</td>
</tr>
<tr>
<td>23</td>
<td>LAIL@MNP</td>
<td>Ethanol</td>
<td>59</td>
</tr>
<tr>
<td>24</td>
<td>LAIL@MNP</td>
<td>Propan-2-ol</td>
<td>61</td>
</tr>
<tr>
<td>25</td>
<td>LAIL@MNP</td>
<td>Dichloromethane</td>
<td>50</td>
</tr>
<tr>
<td>26</td>
<td>LAIL@MNP</td>
<td>Tetrahydrofuran</td>
<td>54</td>
</tr>
<tr>
<td>27</td>
<td>LAIL@MNP</td>
<td>Acetone</td>
<td>73</td>
</tr>
<tr>
<td>28</td>
<td>LAIL@MNP</td>
<td>DMF</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>LAIL@MNP</td>
<td>Acetonitrile</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>LAIL@MNP</td>
<td>Dimethyl sulfoxide</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>LAIL@MNP</td>
<td>Ethyl acetate</td>
<td>59</td>
</tr>
<tr>
<td>32</td>
<td>LAIL@MNP</td>
<td>Chloroform</td>
<td>65</td>
</tr>
<tr>
<td>33</td>
<td>LAIL@MNP</td>
<td>CPME</td>
<td>57</td>
</tr>
<tr>
<td>34</td>
<td>LAIL@MNP</td>
<td>Hexane</td>
<td>55</td>
</tr>
<tr>
<td>35</td>
<td>LAIL@MNP</td>
<td>Toluene</td>
<td>63</td>
</tr>
<tr>
<td>36</td>
<td>LAIL@MNP</td>
<td>Dioxane</td>
<td>61</td>
</tr>
</tbody>
</table>

*aReaction condition: 2-naphthol (1.0 mmol), dimedone (1.0 mmol), benzaldehyde (1.0 mmol) and catalyst (15 mg). bSolvents (1.5 mL). cIsolated yield. d3-(3-(trimethoxysilyl)propyl)-1H-imidazol-3-ium chloride.

Table S3. Optimization of reaction conditions.*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>Catalyst loading (mg)</th>
<th>Molar ratio (mmol)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>1:1.2</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15</td>
<td>1:1.2</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>1:1.2</td>
<td>32</td>
</tr>
<tr>
<td>Entry</td>
<td>Catalyst</td>
<td>Solvent</td>
<td>Yield (%)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[BMIM]PF<sub>6</sub></td>
<td>Solvent-free</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[EMIM]Cl</td>
<td>Solvent-free</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[BMIM]OTf</td>
<td>Solvent-free</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AlCl<sub>3</sub></td>
<td>Solvent-free</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FeCl<sub>3</sub></td>
<td>Solvent-free</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CuCl<sub>2</sub></td>
<td>Solvent-free</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

*aReaction condition: Aniline (1.0 mmol), acetonylacetone (1.2 mmol) and Fe₃O₄@SiO₂-IL-ZnCl_y (15 mg) under solvent-free sonication. bYield was reported by GC. cYield in parenthesis was isolated yield.

Table S4. Effect of various catalysts and solvents.
<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>Solvent</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>HfCl₄</td>
<td>Solvent-free</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>ZnCl₂</td>
<td>Solvent-free</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>Al₂O₃</td>
<td>Solvent-free</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Fe₂O₃</td>
<td>Solvent-free</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>MgO</td>
<td>Solvent-free</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>CuO</td>
<td>Solvent-free</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>Cu₂O</td>
<td>Solvent-free</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>ZnO</td>
<td>Solvent-free</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>CuFe₂O₄</td>
<td>Solvent-free</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>ZnFe₂O₄</td>
<td>Solvent-free</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>Fe₃O₄</td>
<td>Solvent-free</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>γ-Fe₂O₃</td>
<td>Solvent-free</td>
<td>49</td>
</tr>
<tr>
<td>19</td>
<td>No catalyst</td>
<td>Solvent-free</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>LAIL@MNP</td>
<td>Solvent-free</td>
<td>95</td>
</tr>
<tr>
<td>21</td>
<td>LAIL@MNP</td>
<td>Dichloromethane</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>LAIL@MNP</td>
<td>Tetrahydrofuran</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>LAIL@MNP</td>
<td>2-Butanol</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>LAIL@MNP</td>
<td>Ethanol</td>
<td>53</td>
</tr>
<tr>
<td>25</td>
<td>LAIL@MNP</td>
<td>Propan-2-ol</td>
<td>48</td>
</tr>
<tr>
<td>26</td>
<td>LAIL@MNP</td>
<td>Acetone</td>
<td>57</td>
</tr>
<tr>
<td>27</td>
<td>LAIL@MNP</td>
<td>DMF</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>LAIL@MNP</td>
<td>Acetonitrile</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>LAIL@MNP</td>
<td>Dimethyl sulfoxide</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>LAIL@MNP</td>
<td>Ethyl acetate</td>
<td>Trace</td>
</tr>
<tr>
<td>31</td>
<td>LAIL@MNP</td>
<td>CPME</td>
<td>10</td>
</tr>
<tr>
<td>32</td>
<td>LAIL@MNP</td>
<td>Toluene</td>
<td>15</td>
</tr>
<tr>
<td>33</td>
<td>LAIL@MNP</td>
<td>Dioxane</td>
<td>13</td>
</tr>
<tr>
<td>34</td>
<td>LAIL@MNP</td>
<td>Chloroform</td>
<td>70</td>
</tr>
</tbody>
</table>

*Reaction condition: Aniline (1.0 mmol), acetonylacetone (1.2 mmol) Fe₃O₄@SiO₂-IL-ZnₓClᵧ (15 mg), and solvent (2.0 mL) under sonication for 30 min. *Yield was reported by GC.
Section S4. Spectral data

9,9-Dimethyl-12-propyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

Yellow powder, M.p. = 170–171 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.94 (s, 1H), 7.89–7.87 (d, $J = 8.0$ Hz, 1H), 7.63–7.62 (d, $J = 6.5$ Hz, 1H), 7.61–7.59 (d, $J = 9.5$ Hz, 1H), 7.48–7.45 (t, $J = 8.0$ Hz, 15.5 Hz, 1H), 7.19 (s, 1H), 6.65–6.63 (d, $J = 9.5$ Hz, 1H), 3.36 (s, 2H), 2.93–2.89 (q, $J = 7.5$ Hz, 15.0 Hz, 2H), 1.60–1.53 (m, 3H), 1.51 (s, 4H), 1.32–1.29 (t, $J = 7.5$ Hz, 15.0 Hz, 3H), 1.13–1.10 (t, $J = 7.5$ Hz, 15 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 187.8, 151.5, 151.4, 143.6, 139.7, 139.6, 134.1, 134.0, 131.5, 131.1, 130.3, 128.0, 125.6, 32.6, 29.9, 26.2, 235, 15.7, 15.7, 15.2, 15.1, 1.2.

12-Cyclohexyl-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

Yellow oil

1H NMR (500 MHz, CDCl$_3$) δ 8.12 – 8.10 (d, $J = 8.5$ Hz, 1H), 7.83 – 7.81 (d, $J = 8.0$ Hz, 1H), 7.71 – 7.69 (d, $J = 9.0$ Hz, 1H), 7.56 – 7.53 (t, $J = 7.0$ Hz, 1H), 7.45 – 7.42 (t, $J = 7.0$ Hz, 1H), 7.23 – 7.22 (d, $J = 8.5$ Hz, 1H), 4.69 – 4.68 (d, $J = 3.4$ Hz, 1H), 2.63 – 2.50 (q, $J = 17.5$ Hz, 2H), 2.43 – 2.29 (q, $J = 16.5$ Hz, 2H), 1.84 – 1.81 (d, $J = 13.0$ Hz, 1H), 1.75 – 1.66 (m, 3H), 1.57 – 1.51 (m, 2H), 1.41 – 1.39 (d, $J = 11.0$ Hz, 1H), 1.25 (s, 3H), 1.14 (s, 3H), 0.96 – 0.87 (m, 4H).
13C NMR (125 MHz, CDCl₃) δ 197.5, 167.0, 149.3, 131.6, 131.5, 128.4, 127.7, 126.5, 124.7, 123.6, 118.7, 117.0, 112.4, 51.1, 45.7, 41.5, 32.8, 31.9, 31.3, 29.9, 28.9, 27.4, 26.8, 26.4, 26.4.

9,9-Dimethyl-12-phenyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 154–155 °C.

1H NMR (500 MHz, DMSO-d₆) δ 8.05–8.03 (d, J = 8.0 Hz, 1H), 7.92–7.90 (d, J = 9.0 Hz, 2H), 7.50–7.47 (dt, J = 1.0 Hz, 7.0 Hz, 1H), 7.46–7.45 (d, J = 9.0 Hz, 1H), 7.44–7.41 (dt, J = 1.0 Hz, 8.0 Hz, 1H), 7.30–7.28 (d, J = 7.5 Hz, 2H), 7.19–7.16 (t, J = 7.5 Hz, 15.5 Hz, 2H), 7.06–7.03 (t, J = 7.5 Hz, 14.5 Hz, 1H), 5.57 (s, 1H), 2.70–2.57 (q, J = 17.0 Hz, 2H), 2.35–2.32 (d, J = 16.0 Hz, 1H), 2.14–2.11 (d, J = 16.0 Hz, 1H), 1.06 (s, 3H), 0.88 (s, 3H).

13C NMR (125 MHz, DMSO-d₆) δ 196.4, 164.3, 147.7, 145.3, 131.6, 131.1, 129.6, 129.0, 128.6, 128.6, 127.6, 126.7, 125.4, 123.7, 117.8, 117.6, 113.7, 50.6, 40.7, 34.6, 32.4, 29.3, 26.7.

12-(4-(tert-Butyl)phenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 209 – 210 °C

1H NMR (500 MHz, CDCl₃) δ 8.04–8.03 (d, J = 8.5 Hz, 1H), 7.78–7.77 (d, J = 7.5 Hz, 1H), 7.75–7.74 (d, J = 9 Hz, 1H), 7.46–7.43 (dt, J = 1.5 Hz, 7 Hz, 1H), 7.39–
7.36 (t, J = 8.0 Hz, 1H), 7.33–7.31 (d, J = 9.0 Hz, 1H), 7.24–7.22 (d, J = 8.5 Hz, 2H), 7.17–7.15 (d, J = 8.5 Hz, 2H), 5.68 (s, 1H), 2.58–2.56 (d, J = 7.0 Hz, 2H), 2.29–2.27 (d, J = 7.0 Hz, 2H), 1.19 (s, 9H), 1.14 (s, 3H), 0.99 (s, 3H).

13C NMR (125 MHz, CDCl₃) δ 197.0, 163.9, 148.7, 147.8, 141.7, 131.5, 128.6, 128.3, 127.9, 126.9, 125.1, 124.8, 123.8, 118.0, 117.1, 114.5, 51.0, 41.5, 34.1, 32.3, 31.27, 29.1, 27.5.

9,9-Dimethyl-12-(p-tolyl)-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 181–182 °C

1H NMR (500 MHz, CDCl₃) δ 8.02–8.01 (d, J = 8.5 Hz, 1H), 7.78–7.74 (t, J = 11.0 Hz, 2H), 7.45–7.42 (t, J = 7.5 Hz, 15.0 Hz, 1H), 7.38–7.35 (t, J = 7.5 Hz, 14.5 Hz, 1H), 7.33–7.31 (d, J = 9.0 Hz, 1H), 7.24–7.23 (d, J = 6.5 Hz, 2H), 6.99–6.97 (d, J = 8.0 Hz, 2H), 5.68 (s, 1H), 2.57 (s, 2H), 2.32–2.23 (q, J = 16.0 Hz, 13.0 Hz, 2H), 2.20 (s, 3H), 1.12 (s, 3H), 0.98 (s, 3H).

13C NMR (125 MHz, CDCl₃) δ 196.9, 163.8, 147.7, 141.9, 135.7, 131.5, 131.4, 129.0, 128.7, 128.4, 128.3, 127.0, 124.9, 123.7, 117.9, 117.1, 114.4, 51.0, 41.5, 34.3, 32.3, 29.3, 27.3, 21.0.

12-(4-Dimethylamino)phenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
White powder, M.p. = 200 – 201 °C

1H NMR (500 MHz, CDCl$_3$) δ 8.04 – 8.03 (d, $J = 8.5$ Hz, 1H), 7.77 – 7.72 (dd, $J = 8.0$ Hz, 9.0 Hz, 2H), 7.44 – 7.41 (t, $J = 7.5$ Hz, 15.5 Hz, 1H), 7.37 – 7.34 (t, $J = 7.0$ Hz, 14.5 Hz, 1H), 7.31 – 7.29 (d, $J = 9.0$ Hz, 1H), 7.19 – 7.17 (d, $J = 8.5$ Hz, 2H), 6.55 – 6.54 (d, $J = 8.5$ Hz, 2H), 5.61 (s, 1H), 2.82 (s, 6H), 2.56 (s, 2H), 2.32 – 2.23 (q, $J = 16.5$ Hz, 8.5 Hz, 2H), 1.11 (s, 3H), 1.00 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 197.1, 163.5, 148.9, 147.7, 133.3, 131.5, 129.2, 129.0, 128.4, 128.3, 126.9, 124.7, 123.9, 118.4, 117.0, 114.7, 112.4, 112.3, 51.0, 41.4, 40.5, 33.6, 32.3, 29.2, 27.4.

12-(2-Hydroxyphenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one24

![Diagram](image.png)

White powder, M.p. = 225 – 226 °C

1H NMR (500 MHz, CDCl$_3$) δ 9.24 (s, 1H), 7.79 – 7.76 (t, $J = 9.0$ Hz, 3H), 7.68 – 7.66 (d, $J = 8.5$ Hz, 1H), 7.40 – 7.37 (m, 2H), 7.34 – 7.32 (d, $J = 9.0$ Hz, 1H), 7.01 – 7.00 (t, $J = 2.0$ Hz, 1H), 6.61 – 6.60 (t, $J = 3.0$ Hz, 1H), 5.77 (s, 1H), 2.61 (s, 2H), 2.43 – 2.34 (q, $J = 16.5$ Hz, 13.0 Hz, 2H), 1.15 (s, 3H), 0.99 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 200.6, 166.8, 152.9, 133.1, 132.7, 131.6, 131.1, 129.1, 128.7, 128.2, 127.9, 127.5, 127.4, 125.3, 123.5, 121.5, 118.8, 116.6, 50.3, 41.6, 30.9, 30.5, 29.7, 29.2, 29.0, 28.0, 27.5.

12-(Benzo[d][1,3]dioxol-5-yl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one25
White powder, M.p. = 234 – 235 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.99 – 7.97 (d, J = 8.5 Hz, 1H), 7.79 – 7.77 (d, J = 8.0 Hz, 1H), 7.76 – 7.75 (d, J = 9.0 Hz, 1H), 7.46 – 7.43 (t, J = 7.0 Hz, 1H), 7.40 – 7.37 (t, J = 8.0 Hz, 1H), 7.32 – 7.30 (d, J = 9.0 Hz, 1H), 6.86 – 6.84 (dd, J = 2.0 Hz, 1H), 6.79 – 6.78 (d, J = 1.5 Hz, 1H), 6.62 – 6.61 (d, J = 8.0 Hz, 1H), 5.83 – 5.79 (d, J = 8.0 Hz, 1H), 5.64 (s, 1H), 2.56 (s, 2H), 2.33 – 2.25 (q, J = 16.5 Hz, 2H), 1.12 (s, 3H), 1.00 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 197.0, 163.8, 147.7, 147.5, 145.8, 138.9, 131.5, 131.4, 128.8, 128.4, 127.0, 124.9, 123.7, 121.8, 117.7, 117.1, 114.1, 109.0, 107.9, 100.7, 51.0, 41.4, 34.3, 32.3, 29.7, 29.2, 28.0, 27.3.

12-(2-Hydroxy-5-methylphenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 178 – 179 °C

1H NMR (500 MHz, CDCl$_3$) δ 8.97 (s, 1H), 7.79 – 7.77 (m, 2H), 7.72 – 7.70 (d, J = 8.5 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.35 – 7.33 (d, J = 8.5 Hz, 1H), 6.91 – 6.89 (d, J = 8.0 Hz, 1H), 6.80 – 6.78 (d, J = 8.0 Hz, 1H), 6.37 (s, 1H), 5.75 (s, 1H), 2.66 – 2.56 (q, J = 17.5 Hz, 2H), 2.42 – 2.34 (q, J = 16.5 Hz, 2H), 1.96 (s, 3H), 1.14 (s, 3H), 1.01 (s, 3H).
\(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta\) 200.5, 166.7, 150.5, 147.9, 132.5, 131.6, 131.3, 130.6, 129.0, 128.9, 128.7, 128.2, 127.5, 125.2, 123.6, 118.6, 117.6, 116.63, 114.1, 50.3, 41.6, 32.5, 28.87, 28.0, 27.5, 20.6.

HRMS (ESI) \(m/z\) calcd for [M + Na]\(^+\) C\(_{26}\)H\(_{24}\)O\(_3\)Na\(^+\) 407.16232, found 407.16252

12-(2-Hydroxy-5-nitrophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(H\)-benzo[\(a\)]xanthen-11-one\(^{26}\)

Yellow powder, M.p. = 117 – 118 °C

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)/DMSO) \(\delta\) 7.74 (m, 1H), 7.44 – 7.38 (m, 4H), 7.06 – 7.02 (q, \(J = 7.0\) Hz, 1H), 7.00 – 6.93 (m, 2H), 6.55 – 6.51 (m, 1H), 5.47 (s, 1H), 2.26 (s, 2H), 1.96 – 1.74 (m, 2H), 0.75 (s, 3H), 0.60 (s, 3H).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)/DMSO) \(\delta\) 197.2, 165.4, 160.4, 147.8, 140.5, 132.7, 131.3, 129.2, 128.6, 127.3, 126.3, 125.1, 123.8, 123.4, 117.3, 116.6, 50.7, 41.3, 40.4, 40.2, 40.0, 39.9, 39.7, 32.3, 29.3, 27.0.

12-(4-Fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(H\)-benzo[\(a\)]xanthen-11-one\(^{27}\)

White powder, M.p. = 185–186 °C

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta\) 7.93 – 7.92 (d, \(J = 8.5\) Hz, 1H), 7.80 – 7.76 (t, \(J = 8.5\) Hz, 17.5 Hz, 2H), 7.46 – 7.42 (dt, \(J = 1.5\) Hz, 7.0 Hz, 1H), 7.40 – 7.37 (dt, \(J = 8.5\) Hz,
1.0 Hz, 8.0 Hz, 1H), 7.33 – 7.32 (d, J = 9.0 Hz, 1H), 7.31 – 7.28 (dt, J = 2.5 Hz, 5.5 Hz, 2H), 6.87 – 6.83 (t, J = 8.5 Hz, 2H), 5.70 (s, 1H), 2.57 (s, 2H), 2.33 – 2.23 (q, J = 16.0 Hz, 16.5 Hz, 2H), 1.12 (s, 3H), 0.97 (s, 3H).

\[^{13}C\text{ NMR}\ (125\text{ MHz, CDCl}_3)\ \delta 196.9, 163.9, 161.2 (d, J = 243.0 Hz, 1C), 147.8, 140.6, 131.5, 131.3, 129.9 (d, J = 8.0 Hz, 1C), 129.8, 129.0, 128.5, 127.1, 125.0, 123.5, 117.4, 117.0, 115.0 (d, J = 21.1 Hz, 1C), 114.13, 50.9, 41.4, 34.0, 32.3, 29.3, 27.1.\]

12-(4-Chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(^H\)-benzo[a]xanthene-11-one\(^{28}\)

White powder, M.p. = 181–182 \(^oC\)

\[^1H\text{ NMR}\ (500\text{ MHz, CDCl}_3)\ \delta 7.92 – 7.90 (d, J = 8.5 Hz, 1H), 7.80 – 7.77 (t, J = 7.5 Hz, 16.0 Hz, 2H), 7.46 – 7.42 (dt, J = 1.0 Hz, 7.0 Hz, 1H), 7.40 – 7.37 (dt, J = 1.0 Hz, 8.0 Hz, 1H), 7.33 – 7.32 (d, J = 9.0 Hz, 1H), 7.28 – 7.26 (d, J = 8.5 Hz, 2H), 7.14 – 7.13 (d, J = 8.5 Hz, 2H), 5.69 (s, 1H), 2.57 (s, 2H), 2.33 – 2.23 (q, J = 16.0 Hz, 17.0 Hz, 2H), 1.12 (s, 3H), 0.97 (s, 3H).

\[^{13}C\text{ NMR}\ (125\text{ MHz, CDCl}_3)\ \delta 196.8, 164.0, 147.8, 143.3, 131.9, 131.5, 131.2, 129.8, 128.5, 127.1, 125.0, 123.5, 117.1, 117.0, 113.9, 50.9, 41.4, 34.2, 32.2, 29.3, 27.1.\]

12-(4-Bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(^H\)-benzo[a]xanthene-11-one\(^{27}\)
White powder, M.p. = 186–187 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.91 – 7.89 (d, J = 8.0 Hz, 1H), 7.80 – 7.77 (t, J = 7.5 Hz, 2H), 7.46 – 7.42 (dt, J = 1.5 Hz, 7.0 Hz, 1H), 7.40 – 7.37 (dt, J = 1.0 Hz, 8.0 Hz, 1H), 7.33 – 7.31 (d, J = 9.0 Hz, 1H), 7.30 – 7.28 (d, J = 8.5 Hz, 2H), 7.22 – 7.21 (d, J = 8.5 Hz, 2H), 5.68 (s, 1H), 2.57 (s, 2H), 2.33 – 2.23 (q, J = 16.0 Hz, 16.5 Hz, 2H), 1.12 (s, 3H), 0.97 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 196.8, 164.1, 147.8, 143.8, 131.5, 131.4, 131.2, 130.2, 129.1, 128.5, 127.1, 125.0, 123.5, 120.1, 117.0, 117.0, 113.8, 50.9, 41.4, 34.3, 32.3, 29.3, 27.2.

12-(3-Chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one20

White powder, M.p. = 173–174 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.93 – 7.91 (d, J = 8.0 Hz, 1H), 7.81 – 7.78 (t, J = 6.5 Hz, 2H), 7.47 – 7.44 (dt, J = 1.0 Hz, 7.0 Hz, 1H), 7.41 – 7.38 (dt, J = 1.0 Hz, 8.0 Hz, 1H), 7.34 – 7.32 (d, J = 9.0 Hz, 1H), 7.29 – 7.26 (t, J = 7.5 Hz, 2H), 7.13 – 7.10 (t, J = 8.0 Hz, 1H), 7.05 – 7.03 (d, J = 8.0 Hz, 1H), 5.69 (s, 1H), 2.62 – 2.54 (q, J = 17.5 Hz, 2H), 2.33 – 2.25 (q, J = 16.0 Hz, 10.5 Hz, 2H), 1.12 (s 3H), 0.98 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 196.7, 164.1, 147.8, 146.7, 134.1, 131.6, 131.3, 129.4, 129.2, 128.5, 128.4, 127.2, 126.8, 126.6, 125.0, 123.5, 117.1, 116.9, 113.7, 50.9, 41.4, 34.5, 32.3, 29.2, 27.2.
12-(3-Bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 177–178 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.93 – 7.92 (d, $J = 8.5$ Hz, 1H), 7.81 – 7.78 (t, $J = 7.0$ Hz, 15.5 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.34 – 7.33 (d, $J = 9.0$ Hz, 2H), 7.21 – 7.18 (m, 1H), 7.07 – 7.04 (t, $J = 8.0$ Hz, 1H), 5.69 (s, 1H), 2.62 – 2.54 (q, $J = 17.5$ Hz, 4.5 Hz, 2H), 2.33 – 2.25 (q, $J = 16.5$ Hz, 8.5 Hz, 2H), 1.12 (s, 3H), 0.99 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 196.8, 164.2, 147.8, 147.0, 131.6, 131.3, 131.2, 129.7, 129.5, 129.2, 128.5, 127.3, 127.2, 125.0, 123.3, 122.5, 50.9, 41.4, 34.5, 32.3, 29.2, 27.2.

12-(3-Fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

White powder, M.p. = 155-156 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.96 – 7.94 (d, $J = 8.5$ Hz, 1H), 7.81 – 7.77 (t, $J = 7.0$ Hz, 15.5 Hz, 2H), 7.46 – 7.43 (t, $J = 7.0$ Hz, 15.5 Hz, 1H), 7.41 – 7.38 (t, $J = 7.0$ Hz, 15.0 Hz, 1H), 7.35 – 7.33 (d, $J = 9.0$ Hz, 1H), 7.20 – 7.12 (m, 2H), 7.02 – 7.00 (d, $J = 10.5$ Hz, 1H), 6.78 – 6.75 (t, $J = 8.5$ Hz, 16.5 Hz, 1H), 5.74 (s, 1H), 2.58 (s, 2H), 2.34 – 2.25 (q, $J = 16.0$ Hz, 12.0 Hz, 2H), 1.13 (s, 3H), 0.98 (s, 3H).
\(^{13}\text{C} \text{ NMR} \) (125 MHz, \(\text{CDCl}_3 \)) \(\delta = 196.8, 164.2, 162.9 \) (d, \(J = 243.9 \) Hz, 1C), 147.8, 147.2 (d, \(J = 6.4 \) Hz, 1C), 131.5, 131.3, 129.6 (d, \(J = 8.1 \) Hz, 1C), 129.1, 128.5, 127.1, 125.0, 124.2 (d, \(J = 2.6 \) Hz, 1C), 123.5, 117.1, 117.0, 115.4, 115.2, 113.8, 113.4, 113.2, 50.9, 41.4, 34.5, 32.2, 29.3, 27.1.

12-(2-Chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(H \)-benzo[\(a \)]xanthen-11-one\(^{27}\)

Yellowish powder, M.p. = 180–181 \(^{\circ}\)C

\(^{1}\text{H} \text{ NMR} \) (500 MHz, \(\text{CDCl}_3 \)) \(\delta = 8.24–8.23 \) (d, \(J = 8.5 \) Hz, 1H), 7.77–7.74 (t, \(J = 8.0 \) Hz, 2H), 7.50–7.47 (t, \(J = 8.0 \) Hz, 1H), 7.40–7.37 (t, \(J = 8.0 \) Hz, 1H), 7.31–7.27 (t, \(J = 9.0 \) Hz, 3H), 7.08–7.05 (t, \(J = 7.0 \) Hz, 1H), 7.01–6.98 (dt, \(J = 1.5 \) Hz, 7.5 Hz, 1H), 6.01 (s, 1H), 2.61 (s, 2H), 2.34–2.22 (q, \(J = 16.0 \) Hz, 2H), 1.14 (s, 3H), 1.01 (s, 3H).

\(^{13}\text{C} \text{ NMR} \) (125 MHz, \(\text{CDCl}_3 \)) \(\delta = 196.8, 164.3, 147.7, 142.2, 133.0, 131.7, 131.4, 130.0, 129.1, 128.4, 127.7, 127.1, 126.9, 126.4, 125.0, 124.0, 123.3, 118.1, 117.1, 113.5, 109.5, 50.9, 41.5, 33.0, 32.2, 29.4, 27.1.

12-(2-Bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(H \)-benzo[\(a \)]xanthen-11-one\(^{31}\)

Pinkish powder, M.p. = 175–176 \(^{\circ}\)C

\(^{1}\text{H} \text{ NMR} \) (500 MHz, \(\text{CDCl}_3 \)) \(\delta = 8.32–8.31 \) (d, \(J = 8.5 \) Hz, 1H), 7.77–7.74 (t, \(J = 7.0 \) Hz, 2H), 7.51–7.47 (t, \(J = 8.0 \) Hz, 2H), 7.40–7.37 (t, \(J = 7.5 \) Hz, 1H), 7.30–7.29 (d,
$J = 8.5 \text{ Hz, 1H}$), 7.26–7.23 (t, $J = 10 \text{ Hz, 1H}$), 7.10–7.07 (t, $J = 7.5 \text{ Hz, 1H}$), 6.92–6.89 (t, $J = 7.5 \text{ Hz, 1H}$), 5.97 (s, 1H), 2.61 (s, 2H), 2.33–2.22 (q, $J = 16 \text{ Hz, 2H}$), 1.14 (s, 3H), 1.00 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 196.7, 164.1, 147.7, 133.4, 131.8, 131.4, 129.2, 128.4, 127.8, 127.6, 127.1, 1245.0, 124.5, 123.5, 117.1, 51.0, 41.6, 35.3, 32.1, 29.3, 27.2.

12-(2-Fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

![Image](image_url)

White powder, M.p. = 155-156 °C

1H NMR (500 MHz, CDCl$_3$) δ 8.12–8.10 (d, $J = 8.5 \text{ Hz, 1H}$), 7.78–7.73 (q, $J = 8.0 \text{ Hz, 2H}$), 7.50–7.47 (t, $J = 8.0 \text{ Hz, 15.0 Hz, 1H}$), 7.40–7.37 (t, $J = 7.5 \text{ Hz, 14.5 Hz, 1H}$), 7.34–7.29 (m, 2H), 7.07–7.00 (m, 1H), 6.97–6.92 (m, 2H), 5.89 (s, 1H), 2.61 (s, 2H), 2.34–2.32 (q, $J = 16.5 \text{ Hz, 2H}$), 1.14 (s, 3H), 1.01 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 196.6, 164.4, 160.0 (d, $J = 245.6 \text{ Hz, 1C}$), 152.9, 147.7, 131.5, 131.4, 130.9 (d, $J = 4.1 \text{ Hz, 1C}$), 129.0 (t, $J = 18.4 \text{ Hz, 44.6 Hz, 1C}$), 128.4, 128.2 (t, $J = 5.0 \text{ Hz, 13.5 Hz, 1C}$), 127.9, 127.5, 127.2, 125.3, 124.9, 124.1 (d, $J = 3.3 \text{ Hz, 1C}$), 123.5, 123.2 (d, $J = 3.4 \text{ Hz, 1C}$), 121.5, 118.9, 117.1, 116.6, 115.6 (d, $J = 22.6 \text{ Hz, 1C}$), 112.8, 50.8, 50.3, 41.4, 33.3, 29.4, 29.2 (d, $J = 2.0 \text{ Hz, 1C}$), 29.0, 28.0, 27.1.

9,9-Dimethyl-12-(2-nitrophenyl)-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
2,5-Dimethyl-1-phenyl-1H-pyrrole$^{14, 16, 18, 34-36}$

Yellow powder, M.p. 52-54 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.49 – 7.46 (t, $J = 7.0$ Hz, 2H), 7.43 – 7.40 (t, $J = 7.5$ Hz, 1H), 7.24 – 7.23 (d, $J = 7.0$ Hz, 2H), 5.93 (s, 2H), 2.06 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 139.1, 129.0, 128.8, 128.3, 127.6, 105.6, 13.0.

GC-MS (EI, 70 eV) m/z 171 ([M]+)

2,5-Dimethyl-1-(o-tolyl)-1H-pyrrole$^{12, 16, 34, 36}$

Yellow powder, M.p. 52-54 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.49 – 7.46 (t, $J = 7.0$ Hz, 2H), 7.43 – 7.40 (t, $J = 7.5$ Hz, 1H), 7.24 – 7.23 (d, $J = 7.0$ Hz, 2H), 5.93 (s, 2H), 2.06 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 139.1, 129.0, 128.8, 128.3, 127.6, 105.6, 13.0.
Yellow oil

1H NMR (500 MHz, CDCl$_3$) δ 7.33 – 7.32 (m, 2H), 7.29 – 7.27 (m, 1H), 7.17 – 7.15 (d, $J = 7.5$ Hz, 2H), 5.91 (s, 2H), 1.94 (s, 3H), 1.92 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 137.1, 130.7, 128.9, 128.3, 128.2, 126.6, 105.2, 29.7, 17.0, 12.5.

GC-MS (EI, 70 eV) m/z 185 ([M]$^+$)

1-(2’-Amino-4’-nitrophenyl)-2,5-dimethyl-1H-pyrrole

Yellow powder, M.p. = 128-130 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.65 – 7.63 (m, 2H), 7.21 – 7.19 (d, $J = 9.0$ Hz, 1H), 5.97 (s, 2H), 3.82 (s, 2H), 1.97 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 145.1, 130.3, 130.2, 124.0, 118.0, 112.8, 109.8, 107.1, 12.2.

HRMS (ESI) m/z calcd for [M + H]$^+$ C$_{12}$H$_{14}$N$_3$O$_2$ $^+$ 230.1049, found 230.1011.

1-(3,5-Dichlorophenyl)-2,5-dimethyl-1H-pyrrole

Orange powder, M.p. 79-81 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.42 – 7.41 (t, $J = 2.0$ Hz, 1H), 7.15 – 7.14 (d, $J = 1.5$ Hz, 2H), 5.90 (s, 2H), 2.06 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 141.0, 135.2, 128.6, 128.6, 127.0, 106.7, 29.7, 13.0.

GC-MS (EI, 70 eV) m/z 239 ([M]$^+$)

1-(2,5-Dichlorophenyl)-2,5-dimethyl-1H-pyrrole

S21
Black powder, M.p. 136-137 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.51 – 7.50 (d, $J = 8.5$ Hz, 1H), 7.42 – 7.39 (dd, $J =$ 2.5 Hz, 2.5 Hz, 1H), 7.36 – 7.35 (d, $J = 2.5$ Hz, 1H), 5.97 (s, 2H), 2.01 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 138.1, 133.0, 132.7, 131.0, 130.8, 129.8, 128.6, 106.2, 12.5.

GC-MS (EI, 70 eV) m/z 239 ([M$^+$])

1-(3,4-Dichlorophenyl)-2,5-dimethyl-1H-pyrrole14,16,34,36

Yellow powder, M.p. 101-103 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.55 – 7.54 (d, $J = 8.5$ Hz, 1H), 7.35 (d, $J = 2.5$ Hz, 1H), 7.10 – 7.08 (m, 1H), 5.91 (s, 2H), 2.05 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 138.5, 133.0, 132.0, 130.8, 130.2, 128.7, 127.6, 106.5, 13.0.

GC-MS (EI, 70 eV) m/z 239 ([M$^+$])

1-(2,5-Dibromophenyl)-2,5-dimethyl-1H-pyrrole

Yellow oil

1H NMR (500 MHz, CDCl$_3$) δ 7.59 – 7.57 (d, $J = 8.5$ Hz, 1H), 7.47 – 7.44 (m, 2H), 5.92 (s, 2H), 1.97 (s, 6H).
13C-NMR (125 MHz, CDCl$_3$) δ 140.0, 134.3, 133.6, 133.0, 128.4, 123.5, 121.3, 106.1, 12.6.

GC-MS (EI, 70 eV) m/z 326 ([M]$^+$)

1-(4-Iodophenyl)-2,5-dimethyl-1H-pyrrole39,40

![1-(4-Iodophenyl)-2,5-dimethyl-1H-pyrrole](image)

Yellow powder, M.p. 63-65 °C

1H-NMR (500 MHz, CDCl$_3$) δ 7.80 – 7.79 (d, $J = 8.5$ Hz, 2H), 6.97 – 6.96 (d, $J = 8.0$ Hz, 2H), 5.90 (s, 2H), 2.03 (s, 6H).

13C-NMR (125 MHz, CDCl$_3$) δ 138.8, 138.3, 130.2, 128.6, 106.2, 92.9, 13.0.

GC-MS (EI, 70 eV) m/z 297 ([M]$^+$).

1-([1,1'-Biphenyl]-2-yl)-2,5-dimethyl-1H-pyrrole41

![1-([1,1'-Biphenyl]-2-yl)-2,5-dimethyl-1H-pyrrole](image)

Yellow powder, M.p. 98-99 °C

1H NMR (500 MHz, CDCl$_3$) δ 7.55 – 7.53 (dd, $J = 1.5$ Hz, 8 Hz, 1H), 7.48 – 7.45 (dt, $J = 1.5$ Hz, 1H), 7.43 – 7.39 (dt, $J = 1.5$ Hz, 1H), 7.25 – 7.22 (m, 4H), 7.01 – 6.99 (dd, $J = 2.0$ Hz, 2H), 5.76 (s, 2H), 1.84 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 140.4, 138.7, 136.4, 130.82, 129.9, 128.5, 128.5, 128.3, 128.2, 128.0, 127.3, 105.8, 12.9.

GC-MS (EI, 70 eV) m/z 247 ([M]$^+$)

1-(4-Hydroxyphenyl)-2,5-dimethyl-1H-pyrrole11,12,17,40
Yellow powder, M.p. 105-107 °C

1H-NMR (500 MHz, DMSO-d_6) δ 9.66 (s, 1H), 7.01 – 6.98 (m, 2H), 6.85 – 6.82 (m, 2H), 5.71 (s, 2H), 1.90 (s, 6H).

13C-NMR (125 MHz, DMSO-d_6) δ 157.2, 130.0, 129.5, 128.1, 116.1, 105.7, 13.3.

GC-MS (EI, 70 eV) m/z 187 ([M]$^+$).

1-(2’-Hydroxy-5’-methylphenyl)-2,5-dimethyl-1H-pyrrole

Black oil

1H NMR (500 MHz, CDCl$_3$) δ = 7.14 – 7.12 (dd, $J = 2.0$ Hz, 2.0 Hz, 1H), 6.96 – 6.95 (d, $J = 8.5$ Hz, 1H), 6.92 – 6.91 (d, $J = 1.5$ Hz, 1H), 5.94 (s, 2H), 5.08 (s, 1H), 2.31 (s, 3H), 1.98 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 150.4, 130.5, 130.1, 129.4, 129.0, 116.5, 115.9, 106.7, 20.4, 12.3.

HRMS (ESI) m/z calcd for [M + H]$^+$ C$_{13}$H$_{16}$NO$^+$ 202.1226, found 202.1201.

1-(2’-Hydroxy-5’-nitrophenyl)-2,5-dimethyl-1H-pyrrole

Orange powder, M.p. 167-170 °C

1H NMR (500 MHz, CDCl$_3$) δ 8.28 – 8.24 (dd, $J = 2.5$ Hz, 2.5 Hz, 1H), 8.09 – 8.08 (d, $J = 3$ Hz, 1H), 7.18 – 7.16 (d, $J = 9.5$ Hz, 1H), 5.99 (s, 2H), 1.99 (s, 6H).
$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) δ 158.7, 141.3, 129.1, 126.1, 125.7, 116.8, 107.9, 12.3.

HRMS (ESI) m/z calcd for [M + H]$^+$ C$_{12}$H$_{13}$N$_2$O$_3^+$ 233.0920, found 233.0939.

2,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrrole$^{11, 12, 14, 16, 36}$

![2,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrrole](image)

Yellow powder, M.p. 144-146 °C

1H NMR (500 MHz, CDCl$_3$) δ 8.35 – 8.34 (d, J = 9.0 Hz, 2H), 7.40 – 7.38 (d, J = 9.0 Hz, 2H), 5.96 (s, 2H), 2.07 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 146.8, 144.8, 128.8, 124.6, 109.0, 107.4, 29.7.

GC-MS (EI, 70 eV) m/z 216 ([M]$^+$)

N-(2,4-Dinitrophenyl)-2,5-dimethyl-1H-pyrrol-1-amine$^{42-45}$

![N-(2,4-Dinitrophenyl)-2,5-dimethyl-1H-pyrrol-1-amine](image)

Yellow powder, M.p. 182-184 °C

1H NMR (500 MHz, CDCl$_3$) δ 9.96 (s, 1H), 9.19 – 9.18 (d, J = 2.5 Hz, 1H), 8.27 – 8.24 (m, 1H), 6.22 – 6.20 (d, J = 9.5 Hz, 1H), 5.94 (s, 2H), 2.08 (s, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 148.7, 139.2, 130.9, 127.4, 123.5, 114.6, 105.7, 11.1.

N^1,N^2-bis(2-(2,5-Dimethyl-1H-pyrrol-1-yl)ethyl)ethane-1,2-diamine

![N^1,N^2-bis(2-(2,5-Dimethyl-1H-pyrrol-1-yl)ethyl)ethane-1,2-diamine](image)

Yellow oil
$^{1} \text{H NMR}$ (500 MHz, CDCl$_{3}$) δ 5.77 – 5.76 (d, $J = 5.0$ Hz, 4H), 3.88 – 3.85 (t, $J = 7.0$ Hz, 4H), 2.83 – 2.81 (t, $J = 7.0$ Hz, 4H), 2.71 (s, 4H), 2.23 (s, 12H).

$^{13} \text{C NMR}$ (125 MHz, CDCl$_{3}$) δ 127.6, 105.4, 49.7, 49.0, 43.7, 12.6.

HRMS (ESI) m/z calcd for [M + H]$^+$ C$_{18}$H$_{31}$N$_4^+$ 303.2543, found 303.2575.
Section S5. 1H, 13C NMR and HRMS spectroscopy

1H and 13C NMR of 9,9-Dimethyl-12-propyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
^{1}H and ^{13}C NMR of 12-cyclohexyl-9,9-dimethyl-8,9,10,12-tetrahydro-^{11}H-benzo[a]xanthen-11-one
1H and 13C NMR of 9,9-dimethyl-12-phenyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(4-(tert-butyl)phenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one

![NMR Spectra]
1H and 13C NMR of 9,9-Dimethyl-12-(p-tolyl)-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(4-dimethylamino)phenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthene-11-one
1H and 13C NMR of 12-(2-hydroxyphenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(benzo[d][1,3]dioxol-5-yl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
^{1}H, ^{13}C NMR and HRMS of 12-(2-hydroxy-5-methylphenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
\(^1H\) and \(^{13}C\) NMR of 12-(2-hydroxy-5-nitrophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11\(H\)-benzo[\(a\)]xanthen-11-one
1H and 13C NMR of 12-(4-fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(4-chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(4-bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-^{11}H-benzo[\(a\)]xanthen-11-one
^{1}H and ^{13}C NMR of 12-(3-chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(3-bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H NMR of 12-(3-fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(2-chlorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(2-bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[a]xanthen-11-one
1H and 13C NMR of 12-(2-fluorophenyl)-9,9-dimethyl-8,9,10,12-tetrahydro-11H-benzo[\textit{a}]xanthen-11-one
1H and 13C NMR of 9,9-dimethyl-12-(2-nitrophenyl)-8,9,10,12-tetrahydro-11H-benzo[α]xanthen-11-one
1H NMR, 13C NMR, and GC-MS of 2,5-Dimethyl-1-phenyl-$1H$-pyrrole
1H NMR, 13C NMR, and GC-MS of 2,5-Dimethyl-1-(o-tolyl)-1H-pyrrole
^{1}H NMR, ^{13}C NMR, and GC-MS of 1-(2'-Amino-4'-nitrophenyl)-2,5-dimethyl-$1H$-pyrrole

![Chemical Structure](image)

[Graph of NMR Spectra]

S52
Display Report

Analysis Info
- **Analysis Name**: D:\Data\2016\4-ri_1-b_2_01\2263.d
- **Method**: dmm 2017.m
- **Sample Name**: 4-ri
- **Comment**:
- **Acquisition Date**: 12/29/2016 6:12:14 PM
- **Operator**: Anh Mai
- **Instrument**: micrOTOF-Q 10187

Acquisition Parameter
- **Source Type**: ESI
- **Ion Polarity**: Positive
- **Set Nebulizer**: 1.2 Bar
- **Focus**: Active
- **Set Capillary**: 4000 V
- **Set Dry Heater**: 200 °C
- **Scan Begin**: 50 m/z
- **Set End Plate Offset**: -500 V
- **Set Dry Gas**: 9.0 l/min
- **Scan End**: 1000 m/z
- **Set Collision Cell RF**: 450.0 Vpp
- **Set Divert Valve**: Source

Graph 1

```
<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1500</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
```

- EIC 230:0000 +All MS, -Spectral Bkgnd, Smoothed (3.01,3.0A)

Graph 2

```
<table>
<thead>
<tr>
<th>mz</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>229.0</td>
<td>230.0</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>
```

- EIC 230:0000 +MS, 3.1min #185, -Spectral Bkgnd

Bruker Compass DataAnalysis 4.0 printed: 12/30/2016 3:20:00 PM Page 1 of 2
1H NMR, 13C NMR, and GC-MS of 1-(3,5-Dichlorophenyl)-2,5-dimethyl-1H-pyrrole
1H NMR, 13C NMR, and GC-MS of 1-(2,5-Dichlorophenyl)-2,5-dimethyl-1H-pyrrole
^{1}H NMR, ^{13}C NMR, and GC-MS of 1-(3,4-Dichlorophenyl)-2,5-dimethyl-^{1}H-pyrrole
1H NMR, 13C NMR, and GC-MS of 1-(2,5-Dibromophenyl)-2,5-dimethyl-$1H$-pyrrole
1H NMR, 13C NMR, and GC-MS of 1-(4-Iodophenyl)-2,5-dimethyl-$1H$-pyrrole
$^1\text{H} \text{ NMR}, \ 1^3\text{C} \text{ NMR, and GC-MS of } 1-([1,1'-\text{Biphenyl}]-2-yl)-2,5\text{-dimethyl}-1H\text{-pyrrole}$
1H NMR, 13C NMR, and GC-MS of 1-(4-Hydroxyphenyl)-2,5-dimethyl-1H-pyrrole
Sample Name: 4-AMINOPHENOL-0-4
Vial Number: 2
1H NMR, 13C NMR, and HRMS of 1-(2'-Hydroxy-5'-methylphenyl)-2,5-dimethyl-1H-pyrrole
Display Report

Analysis Info
Analysis Name: D:\Data\2016\2 ami_1-b_1_01_2267.d
Method: dmm 2017.m
Sample Name: 2 ami
Comment:

Acquisition Parameter
Source Type: ESI
Ion Polarity: Positive
Set Nsulizer: 1.2 Bar
Focus: Active
Set inject: 4000 V
Set Dry Heater: 200 °C
Scan Begin: 100 m/z
Set End Plate Offset: -500 V
Set Dry Gas: 9.0 L/m
Scan End: 1000 m/z
Set Collision Cell RF: 150.0 Vpp
Set Divert Valve: Source

Graphs:
- Intens. vs. Time (min)
- Intens. vs. m/z

Bruker Compass DataAnalysis 4.0
printed: 12/30/2016 4:04:31 PM
Page 1 of 2
1H NMR, 13C NMR, and HR-MS of 1-(2'-Hydroxy-5'-nitrophenyl)-2,5-dimethyl-1H-pyrrole
Display Report

Analysis Info
- **Acquisition Date**: 12/29/2016 6:23:13 PM
- **Analysis Name**: D:\Data\2016\2 amino 4 nitro_1-b_3_01_2264.d
- **Method**: dmm 2017.m
- **Sample Name**: 2 amino 4 nitro
- **Comment**:

Acquisition Parameter
- **Source Type**: ESI
- **Focus**: Active
- **Scan Begin**: 56 m/z
- **Scan End**: 1000 m/z

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Positive</td>
<td>4000 V</td>
</tr>
<tr>
<td>Set Capillary</td>
<td>0 m/z</td>
</tr>
<tr>
<td>Set End Plate Offset</td>
<td>-500 V</td>
</tr>
<tr>
<td>Set Divert Valve</td>
<td>Source</td>
</tr>
<tr>
<td>Set Dry Heater</td>
<td>200 °C</td>
</tr>
<tr>
<td>Set Dry Gas</td>
<td>9.0 l/min</td>
</tr>
</tbody>
</table>

Graphs

1. **EIC 233.0000** +MS, -Spectral Bkgd, Smoothed (4,01,2,GA)
2. **+MS, 3.4min #002, -Spectral Bkgd**
3. **+MS, 3.4min #002, -Spectral Bkgd**

Bruker Compass DataAnalysis 4.0
- **printed**: 12/30/2016 2:48:12 PM
- **Page 1 of 2**

S71
1H NMR, 13C NMR, and GC-MS of 2,5-dimethyl-1-(4-nitrophenyl)-1H-pyrrole
1H NMR, 13C NMR, and GC-MS of N-(2,4-dinitrophenyl)-2,5-dimethyl-1H-pyrrol-1-amine
1H NMR, 13C NMR, and HRMS of N_1,N_2-bis(2-(2,5-Dimethyl-1H-pyrrol-1-yl)ethyl)ethane-1,2-diamine
Section S6. References

