Supporting Information

A Highly Sensitive and Selective Chemosensor for Pb\(^{2+}\) Based on Quinoline-coumarin

Xianjiao Meng \(^a\), Duanlin Cao \(^a\), Zhiyong Hu \(^{ab}\), Xinghua Han \(^{ab}\), Zhichun Li \(^a\), Wenbing Ma\(^r\) \(^{ab}\)

Email: mawenbing@nuc.edu.cn; 306421966@qq.com

\(^a\) School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China.

\(^b\) National Demonstration Center for Experimental Comprehensive Chemical Engineering Education
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determination of association constant</td>
<td>3</td>
</tr>
<tr>
<td>2. 1H NMR spectra of compound 1</td>
<td>4</td>
</tr>
<tr>
<td>3. 13C NMR spectra of compound 1</td>
<td>5</td>
</tr>
<tr>
<td>4. ESI-MS spectra of compound 1</td>
<td>6</td>
</tr>
</tbody>
</table>
1. Determination of association constant

The association constants (Ka) were also determined based on the fluorescent titration curve using the equation as follows:

Where F and F_0 represent the intensity of host in the presence and absence of ions, respectively, F_{max} is the saturated intensity of host in the presence of excess amount of ions; $[X]$ is the concentration of ions added.

$$\frac{1}{F - F_0} = \frac{1}{F_{\text{max}} - F_0} \left[\frac{1}{K_a[X]} + 1 \right]$$
2. 1H NMR spectra of sensor 1

Fig.S1. 1H NMR spectra of sensor 1

3. 13C NMR spectra of sensor 1
Fig. S2. 13C NMR spectra of sensor 1

4. ESI-MS spectra of sensor 1
Fig. S3. ESI-MS spectra of sensor 1.