Supplementary Information

Design and Synthesis of novel N-substituted perylene diimide based low band gap polymers for organic photovoltaic application

Savita Meena,a Tauheed Mohammad,b Viresh Dutta b and Josemon Jacoba*

aDepartment of Material Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
bPhotovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
*Corresponding author. Tel.: +91-11-26591425
E-mail addresses: jacob@polymers.iitd.ac.in

Contents

Synthetic procedure for monomer M2
Synthetic procedure for monomer M4
Synthesis of M2 and M4
1H and 13C NMR spectra of M1
MALDI-TOF MS spectrum of M1
1H and 13C NMR spectra of M2 and M4
1H NMR spectra of polymers P1-P3
TGA graph of polymers P1-P3
AFM height and phase images of P1:P3HT, P2:P3HT and P3:P3HT blend films in 1.5:1 and 2:1 weight ratios

Scheme S1
Fig. S1-S2
Fig. S3
Fig. S4-S7
Fig. S8-S10
Fig. S11
Fig. 12
1. Synthesis of 2,2’-(9,9-Dioctyl-9H-fluoren-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-
dioxaborolane) (M2).

Bromination of 1 (2.0 g, 12.03 mmol) in presence of bromine (1.48 mL, 27.67 mmol; added dropwise at 0 °C) with 10 mL of chloroform at room temperature for overnight stirring in dark was resulted in dibromo fluorene. This was alkylated with n-octyl bromide (5.36 mL, 30.0 mmol) in DMSO (40 mL) using tetrabutylammonium hydroxide (0.09 g) and KOH (5.49 g dissolved in 5.5 mL of distilled water) at 80 °C for 72 h yielded in 2,7-dibromo-9,9-dioctyl-9H-fluorene 5 (5.26 g, 80%). A mixture of 5 (2.0 g, 3.64 mmol), bis(pinacolato)diboron (2.14 g, 8.40 mmol), potassium acetate (2.14 g, 21.84 mmol) and Pd(dppf)Cl$_2$ (0.05 g, 0.06 mmol) were dissolved in dry 1,4-dioxane (20 mL, 3.64 mmol) under N$_2$ atmosphere for 36 h at 105 °C with continuous stirring. The reaction was monitored using TLC with 2% ethyl acetate in hexane. The reaction was cooled to room temperature and the crude product was extracted with ethyl acetate, washed with 2 × 30 mL of distilled water and dried over anhydrous Na$_2$SO$_4$. The solvent was evaporated and residue was purified using column chromatography over silica gel with 3.5% ethyl acetate in hexane as the eluent to isolate M2 as a creamy white solid. Yield: 1.71 g, 70%. Anal. Calc. for C$_{41}$H$_{64}$B$_2$O$_4$: C, 76.64%; H, 10.04%. Found: C, 76.55%; H, 9.96%. 1H NMR (400.13 MHz, CDCl$_3$, 25 °C vs TMS) δ: 7.81(d, 2H, $J = 7.6$ Hz), 7.75(s, 2H), 7.72(d, 2H, $J = 7.6$ Hz), 2.00(t, 4H, $J = 6.8$ Hz), 1.39(s, 24H), 1.18-1.01(m, 20H), 0.81(t, 6H, $J = 7.2$ Hz), 0.55(m, 4H). 13C NMR (100.61 MHz, CDCl$_3$, 25 °C vs TMS) δ: 150.4, 143.8, 133.6, 128.8, 119.3, 83.6, 55.1, 40.0, 31.7, 29.8, 29.2, 29.1, 24.9, 23.5, 22.5, 14.0.

2. Synthesis of 4,7-bis(4-octylthiophen-2-yl)benzo[c]-1,2,5-thiadiazole (M4).

7 (1.0 g, 3.40 mmol) and 6 (3.29 g, 10.20 mmol) were dissolved in a mixture of toluene and THF under N$_2$ atmosphere followed by the addition of sodium carbonate (1.08 g dissolved in 2 mL of distilled water) and tetrabutylammonium hydroxide (0.1 g). After purging the reaction mixture with N$_2$ for another 20 minutes, Pd(PPh$_3$)$_4$ (0.18 g, 0.16 mmol)
was added. The reaction was carried out for 24 h at 110 °C. The reaction was monitored using TLC with 2% ethyl acetate in hexane. The reaction was cooled to room temperature and the crude product was extracted with chloroform, washed with 30 mL of distilled water and dried over anhydrous Na$_2$SO$_4$. The solvent was evaporated and residue was purified using column chromatography over silica gel with 2.5% ethyl acetate in hexane as the eluent to obtain M4 as a bright orange solid. Yield: 1.43 g, 80%. Anal. Calc. for C$_{30}$H$_{40}$N$_2$S$_3$: C, 68.65%; H, 7.68%; N, 5.34%. Found: C, 68.56%; H, 7.59%; N, 5.25%. 1H NMR (400.13 MHz, CDCl$_3$, 25 °C vs TMS) δ: 7.97(s, 2H), 7.80(s, 2H), 7.04(s, 2H), 2.69(t, 4H, $J = 7.6$ Hz), 1.71(quint, 4H, $J = 7.6$ Hz), 1.41-1.29(m, 20H), 0.89(t, 6H, $J = 6.9$ Hz). 13C NMR (100.61 MHz, CDCl$_3$, 25 °C vs TMS) δ: 152.4, 144.2, 138.9, 128.9, 125.8, 125.3, 121.4, 31.8, 30.6, 30.4, 29.4, 29.3, 29.2, 22.6, 14.1.

Scheme S1 Synthesis of Monomers M2 and M4.
Fig. S1 1H NMR spectrum of M1
Fig. S2 13C NMR spectrum of M1
Fig. S3 MALDI-TOF MS spectrum of M1
Fig. S4 1H NMR spectrum of M2
Fig. S5 13C NMR spectrum of M2
Fig. S6 1H NMR spectrum of M4
Fig. S7 13C NMR spectrum of M4
Fig. S8 1H NMR spectrum of P1
Fig. S9 'H NMR spectrum of P2
Fig. S10 1H NMR spectrum of P3
Fig. S11 TGA Graph for polymers P1-P3
P1:P3HT (1.5:1) blend

P1:P3HT (2:1) blend

P2:P3HT (1.5:1) blend
Fig. S12 AFM topographic (left) and phase (right) images of P1:P3HT, P2:P3HT and P3:P3HT blend films.