Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose

Keng-Ku Liu a, Qisheng Jiang a, Clayton Kacica b, Hamed Gholami Derami a, Pratim Biswas b,* and Srikanth Singamaneni a,*

* Corresponding Authors

a. Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, Missouri 63130, USA
E-mail: singamaneni@wustl.edu

b. Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St Louis, Missouri 63130, USA
E-mail: pbiswas@wustl.edu
Figure S1. (a) AFM image of GO on a silicon substrate. (b) Raman spectrum of GO.
Figure S2. Electrical conductivity of SnO$_2$/rGO/BNC electrode with different SnO$_2$ concentrations.
Figure S3. Mass specific capacitance of the PEDOT:PSS/SnO$_2$/rGO/BNC supercapacitor device at various current densities.
Figure S4. CV curves of the supercapacitor under bending at the scan rate of 100 mV/s.