Layer Charge Robust Delamination of Organo-Clays

Matthias Daab,^a Natalie J. Eichstaedt,^a Andreas Edenharter,^a Sabine Rosenfeldt^a and Josef Breu^{a*}

^aBavarian Polymerinstitute and Department of Chemistry, University of Bayreuth, D-95440 Bayreuth, Germany

Supporting Information

Content:

- 1. Supporting Data
- PXRD of Clay Minerals
- Layer Charge Determination: Charge Density vs. Chain Length
- Meglumine-clays: CHN and EDX
- Volume Fraction of Gels (Calculation).
- Glucosamine-clays
- Hec_{pri}: birefringence
- 2. Supporting References

1. Supporting Data PXRD of Clay Minerals.

Fig. S1: PXRDs of Hec (A) and Verm (B) indicate a crystalline swollen phase with one layer of water molecules in the interlayer space ($d_{001} = 12.5$ Å). The patterns can be indexed in C2/m (No. 12) and least square refined lattice parameters for Hec (a = 5.20(1) Å, b = 9.10(1) Å, c = 12.48(4) Å, $\gamma = 95.44(4)^{\circ}$) and Verm (a = 5.26(1) Å, b = 9.07(2) Å, c = 12.48(4) Å, $\gamma = 95.22(4)^{\circ}$) can be derived without unidexed lines.

Fig. S2: PXRD of as synthesized Hec_{pri}, Proto-amphibol (PDF2-database number 00-013-0409, the most intense reflexions are marked by ticks) is found as a sidephase.

Layer Charge Determination.

Tab. S1: Layer charges corresponding to dense packings of mono- or bilayers for nalkylammonium chains ($C_nH_{2n+1}NH_3^+$) of different length n. The layer charge that results in a dense monolayer or a dense bilayer arrangement is given as follows, assuming a typical *a,b* area of 47.6 Å²:¹

chain lenght n	monolayer	bilayer	
	[p.f.u.]	[p.f.u.]	
5	0.56	1.12	
6	0.50	0.99	
7	0.44	0.89	
8	0.40	0.80	
9	0.37	0.73	
10	0.34	0.67	
11	0.31	0.62	
12	0.29	0.58	
13	0.27	0.54	
14	0.25	0.51	
15	0.24	0.48	

Meglumine-clays: CHN-analysis and EDX.

The completeness of exchange was determined by CHN- and by EDX-analysis for the remaining sodium-content. Interlayer cation content was calculated by carbon content. The amount of organo-cations per gram clay is calculated from the determined wt% of carbon in the organo-clay; the amount of carbon atoms per Meglumine-cation (7) and the molar mass of carbon:

 $CEC_{Meglu-clay} = \frac{wt\% C}{7.12.011 g/mol}$

 $CEC_{Meglu-clay}$ was compared to the expected maximum Meglumine-content in mmol / 100 g ($CEC_{Meglu-max.}$) as calculated from the amount of exchangeable Na⁺-ions n per 100 g. The amount n is given in mval as determined by the BaCl₂-method, n_{verm} = 185 mval (per 100 g), n_{Hec} = 129 mval (per 100 g), n_{LCR1} = 103 mval (per 100 g), n_{LCR2} = 75 mval (per 100 g) and n_{Hec-Pri} = 116 mval (per 100 g). Furthermore, the molar masses M of the former interlayer ions of the clays and Meglumine-cations are needed.

 $CEC_{Meglu-max} = \frac{n}{100 \, g - M(former \, interlayer \, ions) \cdot n + M(Meglumine) \cdot n}$

The completeness of organo-exchange is calculated from the ratio $CEC_{Meglu-clay} / CEC_{Meglu-max}$ and is listed in Table S2.

	Verm	Hec	LCR1	LCR2	Hec _{pri}
wt% C	8.769	11.580	7.598	5.809	7.470
CEC _{Meglu-clay} [mmol/100g]	138	104	90	69	89
CEC _{Meglu-max} [mmol/100g]	140	105	87	66	97
deviation	-2%	-1%	+4%	+5%	-8%

Tab. S2: CHN-analysis of Meglumine-clays.

Fig. S3. The EDX-measurements of the Na-clays (Verm, Hec and Hec_{pri}) do not show remaining Na (position of Na-K_a shown by dashed line) in dried Meglumine-clay (separation of Na-containing side phases like Protoamphibole was carried out by sedimentation for the case of delaminated Hec_{pri} prior to sample preparation).

Volume Fraction of Gels.

First of all, the weight-fraction of the clay lamellae in the dry Meglumine-clay sample is calculated as follows:

 $wt\%_{lamellae} = 1 - wt\%_{Meglumine}$

The weight fraction of Meglumine is determined by CHN-analysis.

The volume fraction ϕ is calculated using the density of the lamellae (2.7 gcm⁻³) and water (1.0 gcm^{-3}) :

 $wt\%_{lamellae} \cdot m_{clay} / \rho_{lamellae}$

 $\phi = \frac{mersumerul}{wt\%_{lamellae} \cdot m_{clay} / \rho_{lamellae} + m_{water} / \rho_{water}}$

The expected d-spacing is calculated using the thickness (t = 9.6 Å) of a clay lamella: $d = t/\phi$

Hecpri: Birefringence.

sediment

Fig. S4. Suspension of HecPri between crossed polarizers. The supernatant gel (containing < 5 wt% of the total solid content) forms a birefringent, lyotropic suspension between crossed polarizers.

Glucosamine-clays.

Fig. S5. SAXS-patterns of Glucosamine-clays: Verm (154 Å, 6.1 vol%, expected: 157 Å) and LCR2 (97 Å, 9.3 vol%, expected: 103 Å).

2. Supporting References

(1) Mermut, A. R.; Lagaly, G. Baseline Studies of the Clay Minerals Society Source Clays: Layer-charge Determination and Characteristics of those Minerals Containing 2:1 Layers. Clays Clay Miner. 2001, 49, 393-397.