A Star-Shaped Conjugated Molecule Featuring a Triazole Core and Diketopyrrolopyrrole Branches is an Efficient Electron-Selective Interlayer for Inverted Polymer Solar Cells

Wei-Jen Chen¹, Yu-Che Cheng¹, Da-Wei Kuo¹, Chin-Ti Chen²*, Bo-Tau Liu³, Ru-Jong Jeng⁴, and Rong-Ho Lee¹*

1. Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
2. Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
3. Department of Chemical and Materials Engineering, National Yunlin University of Science & Technology, Yunlin 640, Taiwan, R.O.C.
4. Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.

*To whom correspondence should be addressed.

Rong-Ho Lee—e-mail: rhl@dragon.nchu.edu.tw; tel.: +886-4-22854308; fax: +886-4-22854734.
Figure S1. 1H NMR spectrum of compound 3.

Figure S2 1H NMR spectrum of compound 5.

Figure S3 1H NMR spectrum of TDGTPA.
Figure S4 13C NMR spectrum of TDGTPA.

Figure S5. CV spectra of TDGTPA measured with 30 runs of scan.
Figure S6. Dark J-V curves of the inverted PSCs with/without a TDGTPA interlayer between ZnO and photoactive layer.

Figure S7. Plots of \((J)^{0.5}\) vs. \(V\) of P3HT/PC\(_{71}\)BM based electron-only devices with/without a TDGTPA interlayer (device architecture: ITO/ZnO/Interlayer/P3HT:PC71BM/Al).
Figure S8. EQE spectra of the P3HT/PC$_{71}$BM based inverted PSCs with/without a TDGTPA interlayer.

Figure S9. DSC thermograms of P3HT and P3HT:PC$_{71}$BM blend (1:1, w/w).

Figure S10. Topographic (a, c) and phase (b, d) images of ZnO/TDGTPA/P3HT:PC$_{71}$BM film (1:1, w/w) measured by AFM before and after 10 days storage in air ambient ((a, b): pristine sample; (c, d): sample after 10 days storage).