Facile synthesis of all-in-one graphene nanosheets@nickel electrode for high-power performance supercapacitor application

Bing Huanga,*, Zhiyuan Zhaoa,*, Jian Chena, Yuzhen Suna, Xiaowei Yanga, Jian Wanga,b, Hao Shenb, Ye Jinb

a Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224000, China

b College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China

Figure S1. SEM images of electrochemical exfoliated GNSs@Ni electrode

\[C_m (F \ g^{-1}) = \frac{t m}{\Delta V} \]

where \(t \) (h) is the discharge time, \(m \) (kg) is the mass of the active materials in the electrodes, \(\Delta V \) (V) is the range of potential, \(I \) (A) is the discharge current.
Figure S2, The typical mass capacitance (C_m) based on the Galvanostatic Charge-Discharge (GCD) curves were recorded at different current density, C_m of the electrode can be calculated through the following Eqs. (1).