Supporting Information

Molten salt construction of stable oxygen vacancies on TiO$_2$ for
enhancement of visible light photocatalytic activity

Yu Zou,a Kaimeng Yang,a Qirong Chen,*b Haitao Wangc and Xiangfu Meng*a

aDepartment of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
bDepartment of Chemistry, Capital Normal University, Beijing 100048, China.
cBeijing Center for Physical and Chemical Analysis (BCPCA), Beijing 100089, China.

Fig. S1 Effect of MS dosages on the annealing of P25.

Fig. S2 X-band EPR spectra of B-TiO$_2$ synthesized with MS at different time and temperature. A longer annealing time and a higher temperature will lead to increase of the bulk Ti$^{3+}$ defect concentration and decrease of surface oxygen vacancy concentration.
Fig. S3 TEM of TiO$_2$ synthesized with addition of NaF via molten salt.

Fig. S4 Photographs of B-TiO$_2$ calcinated in air at different temperature for 2h. It is found that the dark blue color fades to white gradually with increasing the calcination temperature from 300 °C to 600 °C.

Fig. S5 XRD of TiO$_2$ synthesized with different TFA amount via MS method.
Fig. S6 Effect of TFA amount on photocatalytic activity of B-TiO$_2$.

Fig. S7 Effect of molten salt dosage on photocatalytic activity.

Fig. S8 Photodegradation of RhB over calcinated B-TiO$_2$ at different temperature. It is clear to see that the photocatalytic activity of calcinated B-TiO$_2$ at 300$^\circ$C decreases slightly. However, the
photocatalytic activity of samples calcined at 400°C, 500°C, and 600°C are almost vanishes.

Fig. 59 Photodegradation of RhB under full spectrum light irradiation.