Supporting Information

Facile synthesis of highly conductive MoS$_2$/graphene nanohybrids with heterostructures as excellent microwave absorber

Jixing Chai,†a,b Deqing Zhang,†*a,b Junye Cheng,c,d Yixuan Jia,b Xuewei Ba,b Ya Gao, e Lei Zhu,f Hao Wang*c and Maosheng Cao*g

a Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China

b School of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China

c Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.

d Center of Super-Diamond and Advanced Films, and Department of Materials Science and Engineering, City University of HongKong, HongKong 999077, China

e School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China

f School of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161006, China

g School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

*Corresponding author: caomaosheng@bit.edu.cn (M.S. Cao), zhdqing@163.com (D.Q. Zhang), whao@szu.edu.cn (H. Wang).

† These authors contributed equally to this work.
Fig. S1 X-ray powder diffraction (XRD) patterns for graphene.

---

Intensity (a.u.)

2 Theta (°)

10 20 30 40 50 60 70 80 90

---

Raman shift (cm⁻¹)

500 1000 1500 2000 2500 3000

Intensity (a.u.)

D G 2D
Fig. S2 Raman spectrum for GN.