Mn substituted Mn$_x$Zn$_{1-x}$Co$_2$O$_4$ oxides synthesized by co-precipitation; effect of doping on the structural, electronic and magnetic properties

Tarekegn Heliso Dollaa, David G. Billingb, Charles Sheppardc, Aletta Prinslooc, Emanuela Carleschid, Bryan P. Doyled, Karin Pruessnere, Patrick Ndungua

aEnergy, Sensors and Multifunctional Nanomaterials Research Group, Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, South Africa

bDST-NRF Centre of Excellence in Strong Materials and Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa

cChromium Research Group, Department of Physics, University of Johannesburg, Auckland Park, South Africa

dDepartment of Physics, University of Johannesburg, Auckland Park, South Africa

eSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa

*Corresponding author. E-mail address: pndungu@uj.ac.za (P. Ndungu)

Supporting information
Fig. S-1: XRD pattern of Mn$_x$Zn$_{1-x}$Co$_2$O$_4$ measured using a D9 diffractometer (XRD; Mo Kα1 radiation, $\lambda = 0.709321$ Å).
Fig. S-2: Rietveld refined XRD patterns for samples (a) ZnCo$_2$O$_4$ ($x = 0$), (b) Mn$_{0.3}$Zn$_{0.7}$Co$_2$O$_4$ ($x = 0.3$), (c) Mn$_{0.7}$Zn$_{0.3}$Co$_2$O$_4$ ($x = 0.7$), and (d) MnCo$_2$O$_4$ ($x = 1$).