Supporting Information

A Targeted Biocompatible Organic Nanoprobe for Photoacoustic and Near-Infrared-II Fluorescence Imaging in Living Mice

Xinhui Xie 1*, Yili Hu 1, Chao Zhang 2, Jialei Song 1, Suyang Zhuang 1, and Yuntao Wang 1

1The Department of Orthopedics, Zhong Da hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
2Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.

*The author is corresponding author. Email: xixinghuixxh@163.com.
Figure S1. MALDI-TOF spectrum of IR-PEG-FA.

Figure S2. 1H-NMR spectrum of IR-PEG.
Figure S3. 1H-NMR spectrum of IR-PEG-FA.

Figure S4. In vivo NIR-II imaging of tumor mice at series of time points after tail intravenous injection with IR-PEG. As shown in these images, a weak fluorescence signal was observed in the tumor sites after tail vein injection with IR-PEG mainly owing to the enhanced permeation and retention (EPR) effect. While the tumor area showed a bright and strong NIR-II fluorescence signal after systemic injection with IR-PEG-FA (Figure 4D) which indicated the targeted contrast agent
(IR-PEG-FA) possesses more tumor-specific targeting performance owing to the both active and passive tumor targeting.