Supporting Information for ‘Dynamic Impact Response of Lithium-Ion Batteries, Constitutive Properties and Failure Model’

Golriz Kermani a,c

Elham Sahraei a,b,c

a Electric Vehicle Safety Lab (EVSL), Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, United States

b Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

c George Mason University, Fairfax, VA 22030, United States
Pouch Cells

\[V = 0.005 \text{ m/s} \]

\[V = 0.050 \text{ m/s} \]

\[V = 0.500 \text{ m/s} \]

Elliptical Cells

\[V = 0.001 \text{ m/s} \]

\[V = 0.010 \text{ m/s} \]

\[V = 0.100 \text{ m/s} \]

Figure S1 - Analytical (dashed lines) vs. experimental (solid lines) load-displacement response of pouch cells (Top) and elliptical cells (Bottom) at different crosshead velocities.

\[\frac{A}{A_{\text{ref}}} = 0.0737 \ln \dot{\varepsilon}^* + 1 ; R^2 = 0.872 \]

\[\frac{A}{A_{\text{ref}}} = 0.1031 \ln \dot{\varepsilon}^* + 1 ; R^2 = 0.994 \]

Figure S2. Linear relationship between the normalized fit coefficients \(\frac{A}{A_{\text{ref}}} \) and \(\ln \dot{\varepsilon}^* \) in a) pouch and b) elliptical cells.
A negative linear relationship was found between ε_f and $\ln \dot{\varepsilon}^*$ in pouch cells for all mesh sizes studied (a, b, and c).

Figure S3.