Enhanced cycling performance of nanostructure LiFePO$_4$/C composites with in-situ 3D conductive networks for high power Li-ion batteries

Chunsong Zhaoa, Lu-Ning Wang$^{a,b, *}$, Jitao Chen$^{c, *}$, Min Gaod

a Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

b State Key Laboratory For Advanced Metals and Materials, Beijing 100083, China

c College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

d China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China

*Corresponding author.

E-mail: luning.wang@ustb.edu.cn (L.W.), chenjitao@pku.edu.cn (C.J.)

Tel: 86-1062334488; Fax: 86-1062332506.
The SEM and TEM images of LFP-S and LFP/C-S were measure in Fig.S1

![Fig.S1. SEM images for (a) LFP-S and (b) LFP/C-S, TEM images for (c, d) LFP/C-S](image_url)

The Li$^+$ diffusion coefficient at open circuit state could be calculated from the slanted lines in the Warburg region by Eq. 1: [1]

$$D_{Li} = \frac{R^2 T^2}{2A \hat{R} \hat{F}} C_0^2 \sigma^2$$

(1)

where D_{Li} is the diffusion coefficient in LiFePO$_4$ (cm2 s$^{-1}$), R is the gas constant (8.31 J mol$^{-1}$ K$^{-1}$), T is the absolute temperature (298 K), A is the surface area of active material, n is the number of electrons transferred per molecule during the electrochemical reaction, F is the Faraday constant (96485 C mol$^{-1}$), C_0 is the molar concentration of lithium ion in LiFePO$_4$ (1.1×10^{-2} mol cm$^{-3}$ here), and σ is the Warburg factor associated with Z_{re} by Equation 2: [1]

$$Z_{re} = K + \sigma \omega^{-1/2}$$

(2)

The Warburg factor can be obtained from the slope between Z_{re} and the $\omega^{-1/2}$ where D_{Li} is the Li$^+$ diffusion coefficient in LFP (cm2 s$^{-1}$), σ is the Warburg factor associated with Z_{re} ($Z_{re} \propto \sigma \omega^{-1/2}$). After linear fitting the relation plot between Z_{re} and the reciprocal square root of the angular frequency ω, as shown in Figure S2, the σ of LFP/C-F and LFP/C-S were calculated to be 14.276 and 24.01 Ω·s$^{-1/2}$, respectively.
Fig. S2. the relationship between Z_{re} and the $\omega^{-1/2}$ of LiFePO$_4$/C composites

Reference