Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

> Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2018

## Supporting Information

## Enantioselective Nozaki-Hiyama-Kishi Allylation-Lactonization for the Syntheses of 3-

## **Substituted Phthalides**

Sharad Vitthal Kumbhar<sup>a</sup> and Chinpiao Chen<sup>a,b\*</sup>

- <sup>a</sup> Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan
- <sup>b</sup> Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970, Taiwan

E-mail: <u>chinpiao@mail.ndhu.edu.tw</u>

## Contents

| General information                                                            | S2         |
|--------------------------------------------------------------------------------|------------|
| Synthesis and characterization of ligands                                      | S2         |
| Synthesis and characterization of phthalides                                   | <b>S</b> 6 |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra for characterized compounds | S13        |
| HPLC data                                                                      | S46        |
| IR Spectra                                                                     | S57        |

### **General information:**

All reactions were carried out in anhydrous solvents. THF and diethyl ether were distilled from sodium-benzophenone under argon. Toluene,  $CH_2Cl_2$ , and hexane were distilled from  $CaH_2$ . <sup>1</sup>H NMR spectra were obtained at 300 or 400 MHz (as indicated), and <sup>13</sup>C NMR spectra were obtained at 75.5 or 100.6 MHz, using a Bruker NMR spectrometer. Chemical shifts ( $\delta$ ) are reported in ppm relative to  $CDCl_3$  (7.26 and 77.0 ppm). Mass spectra (EI-MS) and high resolution mass spectra (HRMS) were determined on a Finnigan/Thermo Quest MAT 95XL mass spectrometer. Infrared spectra were recorded using a JASCO FT/IR S5 410 spectrometer. All asymmetric reactions were conducted in dry glassware under argon. Enantiomeric excesses were determined using Lab Alliance Series III high performance liquid chromatography (HPLC) with a Chiracel OJ column (Daicel Chemical Industries, LTD). Optical rotations were measured using a JASCO P-1010 Polarimeter at the indicated temperature using a sodium lamp (D line, 589 nm). Flash column chromatography was performed using MN silica gel 60 (70–230 mesh) purchased from Macherey-Nagel.

## Synthesis and characterization of ligands

## 1. (1*S*,9*S*)-10,10-dimethyl-5-pyridin-2-yl-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-triene (3):



A mixture of compound 1 (6.51 g, 19.97 mmol), compound 2 (3.0 g, 19.97 mmol, ), and ammonium acetate (12.31 g, 159.76 mmol) in glacial acetic acid (20.0 mL) under argon atmosphere was heated at 100–110 °C for 15 h. After cooling to room temperature, the reaction mixture was transferred to a 500-mL conical flask, water (200 mL) was added, and the mixture was basified by sodium hydroxide until it become basic. The aqueous solution was extracted three times with ethyl acetate ( $3 \times 200$  mL) and the combined extracts were dried over anhydrous magnesium sulfate. After filtering and concentration, the resulting residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (10:90) as the mobile phase to obtain compound **3** (3.80 g, 15.18 mmol) as pale yellow solid. Yield: 76%.

[α]<sup>20</sup> <sub>D</sub> –40° (*c* 1.05, CHCl<sub>3</sub>)., <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ): 8.65 (t, *J* = 3.5 Hz, 1H), 8.37–8.32 (m, 1H), 8.04 (dd, *J* = 3.3, 7.7 Hz, 1H), 7.80–7.73 (m, 1H), 7.32 (dd, *J* = 4.0, 7.7 Hz, 1H), 3.19 (s, 2H), 2.80–2.69 (m, 2H), 2.42–2.30 (m, 1H), 1.42 (s, 3H) 1.32–1.29 (dd, *J* = 4.0, 9.5 Hz, 1H), 0.68 (s, 3H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>, δ): 156.8, 156.4, 153.5, 149.1, 142.2, 136.7, 133.7, 123.0, 120.8, 117.8, 46.5, 40.3, 39.5, 36.7, 31.9, 26.0, 21.3. IR (KBr): 3049, 2972, 2923, 1920, 1583, 1577, 1558, 1437, 1432, 1382, 1366, 1245, 1144, 1072, 990, 943, 899, 792, 751, 620, 609, 518cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 251 ([M+H]<sup>+</sup>, 100), 250 (10) HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>17</sub> H<sub>19</sub>N<sub>2</sub>, 251.1549, found 251.1549.

2. (1*S*,8*R*,9*S*)-(10,10-dimethyl-5-pyridin-2-yl-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7),3,5-trien-8-yl)-diphenyl-methanol (4)



To a solution of Bipy **3** (0.50 g, 2.00 mol) in dry THF (5 mL) the LDA solution (2 M in hexane, 1.2 mL, 2.3966 mmol) was added at -78 °C and stirred for 2 h to generate a dark blue solution. To this dark blue solution was added a solution of benzophenone (0.36 g, 2.00 mmol) in THF (5 mL) and the temperature was slowly raised to room temperature and stirred for 8 h. The reaction was quenched by adding  $NH_4Cl$  solution, and extracted with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>. After concentration to give a residue, the residue was purified by flash column chromatography using silica gel as a stationary phase and using ethyl acetate-hexane (1:9) as the mobile phase, to get product 4 (0.66 g, 1.52 mmol) as off white solid. Yield: 76%. mp: 75–77 °C. [α]<sup>20</sup> D –452° (*c* 1.77, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ): 9.90 (bs, 1H), 8.69 (d, J = 4.4 Hz, 1H), 8.32–8.16 (m, 2H), 7.80–7.74 (m, 1H), 7.56–7.36 (m, 5H), 7.36–7.27 (m, 2H), 7.17–6.96 (m, 5H), 4.48 (s, 1H), 2.75–2.52 (m, 2H), 2.12–2.03 (m, 1H), 1.48 (s, 3H), 0.89 (s, 3H), -0.07 - -0.12 (d, J = 10.4 Hz, 1H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 156.8, 155.3, 151.4, 149.3, 146.9, 145.8, 144.3, 137.2, 134.9, 128.3, 128.2, 127.8, 127.2, 127.0, 126.4, 123.6, 120.6, 118.7, 81.9, 47.9, 45.8, 43.0, 41.5, 28.7, 26.3, 21.2. IR (KBr): 3445, 3148, 3054, 2972, 2928, 2862, 1577, 1558, 1462, 1432, 1380, 1284, 1152, 987, 938, 897, 858, 787, 784, 743, 636, 625, 578, 543, 515 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 433 ([M+H]<sup>+</sup>, 100), 432 (3), 431 (8), 367 (5), 249 (6), 167 (15). HRMS-TOF-ES<sup>+</sup> (m/z): [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>29</sub>N<sub>2</sub>O, 433.2281, found 433.2281.

3. (1*S*,8*R*,9*S*)-2-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-trien-8-yl)-1,3-diphenyl-propan-2-ol (5):



To a solution of Bipy 3 (0.2 g, 0.80 mmol) in dry THF (3 mL) the LDA solution (0.48 mL, 0.95 mmol, 2 M in hexane) was added at -78 °C and stirred for 2 h to generate a dark blue solution. To this dark blue solution was added a solution of 1,3-diphenyl acetone (0.17 mg, 0.7988 mmol) in THF (2 mL) and the temperature was slowly raised to room temperature and stirred for 3 h. The reaction was quenched by adding NH<sub>4</sub>Cl solution, and extracted with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>. After concentration to give a residue, the residue was purified by flash column chromatography using silica gel as a stationary phase and using ethyl acetate-hexane (1:9) as the mobile phase, to get product 5 (0.27 g, 0.60 mmol) as pale yellow semisolid. Yield: 75%.  $[\alpha]^{20} - 290^{\circ}$  (c 1.09, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.70-8.66 (m, 1H), 8.31-8.20 (m, 2H), 8.18 (d, J = 7.7 Hz, 1H), 7.88-7.82 (m, 1H), 7.47-7.34(m, 3H), 7.35–7.11 (m, 8H), 3.21 (s, 1H), 2.94–2.59 (m, 6H), 1.70–1.37 (m, 4H), 1.29–1.25 (m, 2H), 0.40 (s, 3H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>, δ): 158.4, 155.4, 151.9, 149.2, 144.1, 138.2, 130.0, 137.1, 134.6, 131.1, 130.9, 127.7, 126.0, 125.9, 123.5, 120.5, 118.5, 79.1, 47.7, 46.7, 46.3, 42.1, 41.9, 29.9, 26.3, 20.7. IR (KBr): 3280, 2021, 2923, 1555, 1577, 1492, 1432, 1451, 1382, 1372, 1251, 1152, 1166, 1086, 960, 905, 861, 784, 751, 699, 655, 609, 518 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (m/z): 461 ([M+H]<sup>+</sup>, 100), 443 (3), 180 (1). HRMS-TOF-ES<sup>+</sup> (m/z): [M+H]<sup>+</sup> calcd For C<sub>32</sub>H<sub>33</sub>N<sub>2</sub>O, 461.2594, found 461.2596.

4. (1*S*,8*R*,9*S*)-1-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-trien-8-yl)-cyclohexan-1-ol (6)



To a solution of Bipy 3 (0.5 g, 2.00 mmol) in dry THF (5 mL) the LDA solution (1.2 mL, 2.40 mmol, 2 M in hexane) was added at -78° C and stirred for 2 h to generate a dark blue solution. To this dark blue solution was added a solution of cyclohexanone (0.20 mg, 1.9972 mmol) in THF (5 mL) and the temperature was slowly raised to room temperature and stirred for 8 h. The reaction was guenched by adding NH<sub>4</sub>Cl solution, and extracted with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>. After concentration to give a residue, the residue was purified by flash column chromatography using silica gel as a stationary phase and using ethyl acetate-hexane (1:9) as the mobile phase, to get product 6 (0.51 g, 1.46 mmol) as brown oil, Yield: 73%.  $[\alpha]^{20}$  D -322° (c 1.82, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.65 (d, J = 2.6 Hz, 1H), 8.29-8.11 (m, 2H), 7.90-7.67 (m, 2H), 7.40 (d, J = 7.7 Hz, 1H), 3.21 (d, J = 15.4Hz, 1H), 2.80 (dd, J = 5.0, 5.0 Hz, 1H), 2.68–2.60 (m, 1H), 2.47–2.41 (m, 1H), 1.98–1.74 (m, 2H), 1.74–1.50 (m, 4H), 1.50–1.34 (m, 6H), 1.35–1.19 (m, 2H), 1.12 (q, J = 13.0 Hz, 1H), 0.69 (s, 3H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>, δ): 158.0, 155.6, 151.9, 149.1, 143.8, 137.1, 134.5, 123.4, 120.6, 118.5, 75.4, 53.1, 46.5, 42.0, 41.9, 37.2, 35.3, 29.5, 26.0, 21.7, 21.5, 21.1. IR (KBr): 3307, 2928, 2857, 1577, 1555, 1432, 1248, 1218, 1179, 1141, 1091, 1053, 1017, 954, 858, 787, 740, 721, 691, 658, 609, 491 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (m/z): 349 ([M+H]<sup>+</sup>, 100), 331 (15), 249 (1), 175 (2). HRMS-TOF-ES<sup>+</sup> (m/z): [M+H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O, 349.2281 found, 349.2278.

5. (1*S*,8*R*,9*S*)-2-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-trien-8-yl)-propan-2-ol (7)



To a solution of Bipy **3** (0.2 g, 0.80 mmol) in dry THF <sup>7</sup> (3 mL) the LDA solution (0.48 mL, 0.95 mmol, 2 M in hexane) was added at -78 °C and stirred for 2 h to generate a dark blue solution. To this dark blue solution was added a solution of acetone (0.05 mg, 0.80 mmol) in THF (2 mL) and the temperature was slowly raised to room temperature and stirred for 8 h. The reaction was quenched by adding NH<sub>4</sub>Cl solution, and extracted with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>. After concentration to give a residue, the residue was purified by flash column chromatography using silica gel as a stationary phase and using ethyl acetate-hexane (1:9) as the mobile phase, to get product 7 (0.20 g, 0.65 mmol) as white solid. Yield: 81%. [ $\alpha$ ]<sup>20</sup> p -160° (*c* 0.19 CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.64 (d, *J* 

= 4.0 Hz, 1H), 8.33–8.11 (m, 2H), 8.00 (s, 1H), 7.75 (dd, J = 7.5, 7.5 Hz, 1H), 7.40 (d, J = 7.7 Hz, 1H), 3.29 (s, 1H), 2.80 (dd, J = 5.5, 5.5 Hz, 1H), 2.61 (dd, J = 5.1, 9.5 Hz, 1H), 2.37 (dd, J = 6.8, 6.8 Hz, 1H), 1.54–1.39 (m, 3H), 1.35 (s, 3H), 1.30–1.17 (m, 2H), 1.12 (s, 3H), 0.71 (s, 3H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 158.0, 155.6, 152.1, 149.1, 143.5, 136.9, 134.5, 123.4, 120.5, 118.7, 74.4, 52.8, 46.5, 42.1, 29.5, 27.5, 26.2, 21.0. LRMS-EI<sup>+</sup> (*m*/*z*): 309 ([M+H]<sup>+</sup>, 100), 291 (13), 249 (3), 148 (1). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>O, 309.1968, found 309.1968.

## Synthesis and characterization of phthalides

## General procedure for preparation of phthalides.

Anhydrous THF (1 mL) was added to a mixture of CrCl<sub>3</sub> (8.0 mg, 0.05 mmol, 0.1 eq), Mn (82.4 mg, 0.15 mmol, 3.0 eq, 325 mesh), and dried powder 4Å MS (100 mg) under argon, and the mixture was stirred for 1 h at room temperature. After ligand 6 (65.0 mg, 0.15 mmol, 0.3 eq) and anhydrous NEt<sub>3</sub> (0.042 mL, 0.30 mmol, 0.6 eq) were added, the suspension was stirred for 1 h at room temperature. Subsequently, allyl bromide (0.064 mL, 0.75 mmol, 1.5 eq) was added. After 1 h at room temperature, aldehyde (0.50 mmol, 1 eq) and Me<sub>3</sub>SiCl (0.095 mL, 0.75 mmol, 1.5 eq) were added, and the suspension was stirred in ice box at 0 °C for 48 h. Saturated aqueous NaHCO<sub>3</sub> was added. Following filtration and evaporation, the aqueous phase was extracted with EtOAc. After the combined organic phases had been evaporated, the residue was dissolved in THF (2 mL). A TBAF solution (1.5 mL, 1.5 mmol, 3 eq, 1M in THF) was added and the mixture was stirred until desilvlation was complete (as verified by TLC). Water was added; the solution was extracted using ethyl acetate, and the combined organic phases were dried over MgSO<sub>4</sub>. Residue was dissolved into THF (2 mL) and p-TsOH (cat.) was added and stirred for 2 h at room temperature. Evaporation of the solvent and flash chromatography (EtOAc/hexane 1:19) gave the products. Enantiomeric excess was determined using high-performance liquid chromatography with a chiral column (Chiralcel OJ column, n-hexane/2-propanol (90/10), flow rate: 1.0  $mL/min^{-1}$ ).

## 1. 3-allyl-5,7-dimethoxyisobenzofuran-1(3H)-one (8)<sup>[1]</sup>



Yield: 87%. Off white solid.  $[\alpha]^{25}_{D}$  –66.3 (*c* 0.55, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 6.43 (s, 1H), 6.41 (s, 1H), 5.81–5.70 (m, 1H), 5.35–5.32 (t, *J* = 11.7 Hz, 1H), 5.20–5.12 (m, 2H), 3.94 (s, 3H), 3.88 (s, 3H), 2.73–2.67 (m, 1H), 2.60–2.53 (m, 1H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.2, 166.6, 159.6, 154.3, 131.4, 119.4, 107.0, 98.7, 97.8, 55.9, 55.9, 39.76. IR (KBr): 3076, 2923, 2846, 1753, 1610, 1459, 1349, 1333, 1218, 1157, 1100, 1034, 836, 757, 691, 554 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 235 ([M+H]<sup>+</sup> 4), 217 (8), 289 (1), 290 (3), 174 (2). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>O<sub>4</sub>, 235.0971 found 235.0970. 97 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

2. 3-allyl-5,6-dimethoxyisobenzofuran-1(3H)-one (9) <sup>[2]</sup>



Yield: 85%. White solid.  $[\alpha]^{25}_{D}$  –52.6° (*c* 0.45, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.32–7.17 (m, 1H), 6.85 (s, 1H), 5.85–5.70 (m, 1H), 5.40 (dd, *J* = 5.9, 5.9 Hz, 1H), 5.30–5.05 (m, 2H), 4.01–3.89 (m, 6H), 2.72–2.60 (m, 2H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 154.7, 150.5, 143.8, 131.4, 119.5, 118.3, 106.2, 103.4, 79.5, 56.3, 56.2, 38.8. IR (KBr): 3076, 2934, 2840, 1753, 1640, 1602, 1500, 1470, 1418, 1336, 1286, 1223, 1133, 1059, 984, 916, 812, 768, 732, 658, 551 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 235 ([M+H]<sup>+</sup>, 9), 230 (2), 228 (3), 226 (4), 191 (6). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>O<sub>4</sub>, 235.0971 found 235.0971. 94 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

3. 3-allyl-4,5,6-trimethoxyisobenzofuran-1(3*H*)-one (10)



Yield: 90%. Pale yellow oil.  $[\alpha]^{25}_{D}$  –29.9 (*c* 0.50, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.11 ( s, 1H), 5.72–5.60 (m, 1H), 5.53–5.48 (m, 1H), 5.10–5.04 (m, 2H), 4.00 (s, 3H), 3.97–3.85 (m, 6H), 3.00–2.91 (m, 1H), 2.58–2.52 (m, 1H); <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 170.3, 155.7, 147.5, 146.7, 134.4, 131.5, 121.6, 119.1, 102.5, 79.1, 61.1, 60.7, 56.3, 53.4, 37.1, 29.6. IR (KBr): 2918, 2848, 1766, 1615, 1478, 1420, 1344, 1301, 1250, 1198, 1106, 1033, 968, 921, 845, 761, 661 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*):265 ([M+H]<sup>+</sup>, 18), 253 (8), 253 (5) 149 (2). HRMS-TOF-ES<sup>+</sup> (*m*/*z*):  $[M+H]^+$  calcd for  $C_{14}H_{16}O_5$ , 265.1077, found 265.1080. 99 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 4. 3-allylisobenzofuran-1(3H)-one (11)<sup>[3]</sup>



Yield: 86%. Brown oil.  $[\alpha]^{25}_{D}$  –32.6° (*c* 0.35, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.91–7.88 (d, *J* = 7.7 Hz, 1H), 7.69–7.50 (m, 2H), 7.55–7.45 (d, *J* = 7.6 Hz, 1H), 5.82–5.68 (m, 1H), 5.55–5.51 (t, *J* = 12.0 Hz, 1H), 5.21–5.13 (dd, *J* = 1.3, 8.5 Hz, 2H), 2.80–2.60 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ ): 149.4, 134.1, 131.1, 129.2, 125.8, 122.0, 119.7, 80.4, 38.6. IR (KBr): 3071, 2917, 2851, 1758, 1643, 1610, 1593, 1462, 1357, 1308, 1286, 1209, 1070, 979, 921, 740, 696, 603, 573 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m/z*): 175 ([M+H]<sup>+</sup>,1), 174 (4), 169 (10), 168 (40), 157 (70), 14 (50). HRMS-TOF-ES<sup>+</sup> (*m/z*): [M+H]<sup>+</sup> calcd for C<sub>11</sub>H<sub>11</sub>O<sub>2</sub>, 175.0760, found 175.0760. 96 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 5. 3-allyl-6-methoxyisobenzofuran-1(3H)-one (12) [3]



Yield: 90%. White solid.  $[\alpha]^{25}_{D}$  –38.9° (*c* 0.65, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.80– 7.77 (d, *J* = 8.4 Hz, 1H), 7.04–7.00 (dd, *J* = 1.7, 2.2 Hz 1H), 6.88–6.87(d, *J* = 2.9 Hz, 1H), 5.84–5.70 (m, 1H), 5.44–5.40 (t, *J* = 11.8 Hz, 1H), 5.29–5.13 (m, 2H), 3.89 (s, 3H), 2.77–2.57 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ ): 170.0, 164.6, 152.0, 131.3, 127.2, 119.5, 116.3, 106.1, 79.5, 55.8, 38.7. IR (KBr): 3076, 2923, 2851, 1758, 1604, 1496, 1462, 1349, 1253, 1152, 1102, 1059, 982, 921, 834, 765, 688, 603 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 205 ([M+H]<sup>+</sup> 0.2), 200 (1), 193 (3), 148 (2). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>13</sub>O<sub>3</sub>, 205.0865, found 205.0865. 97 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 6. 7-allyl-[1,3]dioxolo[4,5-f]isobenzofuran-5(7*H*)-one (13) <sup>[2]</sup>



Yield: 76%. Colorless oil.  $[\alpha]^{25}_{D}$  –48.9° (*c* 0.45, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.19 (s, 1H), 6.81 (s 1H), 6.11 (s, 2H), 5.78–5.71 (m, 1H), 5.38–5.35 (t, *J* = 12.0 Hz, 1H), 5.20–5.14 (m, 2H), 2.71–2.56 (m, 2H) <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ ): 169.8, 153.5, 149.2, 145.9, 131.1, 120.0, 119.7, 104.3, 102.6, 101.7, 79.4, 38.7. IR (KBr): 2923, 1753, 1604, 1500, 1467, 1396, 1341, 1223, 1226, 1097, 1048, 1031, 923, 829, 814, 718,631 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m/z*): [M+H]<sup>+</sup> 219 ([M+H]<sup>+</sup> 14), 208 (4), 193 (4), 166 (6). HRMS-TOF-ES<sup>+</sup> (*m/z*): [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>11</sub>O<sub>4</sub>, 219.0658, found 219.0658. 96 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 7. 3-allyl-6-(dimethylamino)isobenzofuran-1(3H)-one (14)<sup>[2]</sup>



Yield: 70%. Brown oil.  $[\alpha]^{25}_{D}$  –48.9° (*c* 0.55, CHCl<sub>3</sub>).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.28 (s 1H), 7.11 (d, *J* = 2.2 Hz, 1H), 7.01 (dd, *J* = 2.2, 8.4 Hz, 1H), 5.84–5.72 (m, 1H), 5.43 (t, *J* = 6.1 Hz, 1H), 5.21–5.12 (m, 2H), 3.02 (s, 6H), 2.72–2.56 (m, 2H), 1.27 (s, 2H). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 171.3, 151.4, 137.0, 131.8, 127.3, 122.2, 119.2, 118.6, 107.0, 80.1, 40.6, 39.1, 29.7. IR (KBr): 3076, 2923, 1758, 1624, 1551, 1437, 1355, 1316, 1278, 1204, 1061, 982, 916, 817, 773, 598, 556 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m/z*): 218 ([M+H]<sup>+</sup>,52), 180 (4), 174 (5), 158 (4), 152 (2). HRMS-TOF-ES<sup>+</sup> (*m/z*): [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>2</sub>, 218.1182 found 218.1182. 96 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 8. 3-allyl-5-bromo-6-(dimethylamino)isobenzofuran-1(3H)-one(15)



Yield: 90%. Brown solid.  $[\alpha]^{25}_{D}$  –56.9° (*c* 0.56, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.67 (s, 1H), 7.53 (s, 1H), 5.82–5.70 (m, 1H), 5.42 (t, *J* = 5.9 Hz, 1H), 5.24–5.16 (m, 2H), 2.85–2.84 (m, 6H), 2.74–2.58 (m, 2H) <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 169.7, 153.5, 144.0, 131.0, 127.6, 126.5, 126.4, 119.9, 116.4, 79.4, 44.2, 38.6. IR (KBr): 3082, 2917, 2851, 2780, 1758, 1635, 1610, 1478, 1451, 1396, 1330, 1283, 1256, 1207, 1187, 1157, 1059, 971, 919, 883, 765, 740, 600 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 296 ([M+H]<sup>+</sup> 100), 294, (7), 284 (2), 281 (3), 271 (7), 258 (9), 240 (8). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>BrNO<sub>2</sub>, 296.0287, found 296.0287. 98 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 9. 3-allyl-4-bromo-6-(methylamino)isobenzofuran-1(3H)-one (16)



Yield: 90%. Yellow oil.  $[\alpha]^{25}_{D}$  –53.7° (*c* 0.48, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): d 7.53 (s, 1H), 7.01 (s, 1H), 5.81–5.70 (m, 1H), 5.42–5.38 (m, 1H), 5.22–5.14 (m, 2H), 4.65 (s, 1H), 2.97–2.94 (d, *J* = 5.1 Hz, 3H), 2.69–2.56 (m, 2H), <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 163.0, 146.9, 137.8, 131.2, 126.8, 125.7, 119.6, 116.0, 105.0, 79.4, 38.9, 30.6. IR (KBr): 3395, 2923, 2851, 1753, 1615, 1514, 1456, 1407, 1333, 1270, 119, 1061, 984, 910, 872, 773, 721, 721, 632 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 296 ([M+H]<sup>+</sup>,1), 264 (18), 213 (28), 160 (6) HRMS-TOF-ES+ (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>BrNO<sub>2</sub>, 296.0287, found 296.0287. 97 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 10. 8-allyl-[1,3]dioxolo[4,5-e]isobenzofuran-6(8H)-one (17)



Yield: 77%. Colorless oil.  $[\alpha]^{25}_{D}$  –43.9° (*c* 0.50, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.08–7.06 (d, *J* = 7.9 Hz 1H), 6.85–6.83 (d, *J* = 7.9 Hz 1H), 6.17 (s, 2H), 5.79–5.69 (m, 1H), 5.48–5.45 (t, *J* = 11.6 Hz, 1H), 5.19–5.13 (m, 2H), 2.74–2.57 (m, 2H) <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>,  $\delta$ ): 167.2, 149.1, 144.8, 142.2, 131.1, 119.7, 114.3, 109.1, 103.3, 80.7, 39.1. IR (KBr): 2923, 2851, 1761, 1640, 1500, 1473, 1323, 1251, 1240, 1207, 1108, 968, 908, 825, 871, 743, 639 cm<sup>-1</sup>. LRMS-EI<sup>+</sup> (*m*/*z*): 219 ([M+H]<sup>+</sup>, 3), 217 (3), 210 (1), 166 (4). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>11</sub>O<sub>4</sub>, 219.0658, found 219.0656. 98 % ee by HPLC analysis (Chiralcel OJ column, hexane:2-propanol = 9:1, 1.0 mL/min, 254 nm UV detector).

## 11. 3-heptyl-4,5,6-trimethoxyisobenzofuran-1(3H)-one (18)



9-BBN (0.18 mL of 0.5 M THF solution, 0.64 mmol, 1.7 eq) was added to olefin **10** (0.10 g, 0.37 mmol, 1 eq) at 25 °C in a flame dried flask under argon. The solution was stirred for 4 h at rt, then  $Cs_2CO_3$  (0.9 mL of a 10 M solution in H<sub>2</sub>O, 0.94 mmol, 2.5 eq) was added and the stirring was continued for 10 min. The resulting solution was cannulated into a flask containing 1-bromobutane (41.5 mg, 0.30 mmol, 0.8 eq), Pd(OAc)<sub>2</sub> (4.2 mg, 0.0189 mmol) and PCy<sub>3</sub> (10.6 mg, 0.0378 mmol) under Ar(g). The flask and cannula were rinsed once with dioxane (0.50 mL, the solvent was degassed by performing a freeze, pump, thaw cycle 3 times prior to use). The reaction mixture was stirred at 40 °C for 20 h, then diluted with EtOAc (5 mL) and flushed through a plug of celite. The residue was concentrated under reduced pressure and purified by flash column chromatography (10 % EtOAc/Hexanes) to provide (0.11 mg, 0.4312 mmol, Yield 92 %) as pale yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.11 (s, 1H), 5.47–5.42 (dd, J = 2.8, 7.9 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 2.20–2.13 (m, 1H), 1.74–1.63 (m, 1H), 1.37–1.22 (m, 10H), 0.91–0.84

(t, J = 7.1 Hz, 3H). IR (KBr): 2927, 2856, 1761, 1614, 1479, 1420, 1345, 1253, 1199, 1106, 1036, 967, 848, 765, 725 cm<sup>-1</sup>. <sup>13</sup>C NMR (100.6 MHz, CDCl3,  $\delta$ ): 170.6, 155.5, 147.6, 146.8, 135.4, 121.4, 102.5, 80.2, 61.1, 60.7, 56.4, 33.4, 31.7, 29.2, 29.0, 24.7, 22.6, 14.0. LRMS-EI<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup>, 323 (100), 225 (25), 180 (30), 148 (12). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>26</sub>O<sub>5</sub>, 323.1780, found 323.1860.

[Ref] Keaton, K. A.; Phillips, A. J. Org. Lett. 2007, 9, 2717–2719.

12. 3 heptyl-4,5,6-trihydroxyisobenzofuran-1(3H)-one (19)



To a solution of **19** (0.12 g, 0.372 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL) at -30 °C was added BBr<sub>3</sub> (0.37 mL of a 1.0 M solution in CH<sub>2</sub>Cl<sub>2</sub>, 0.37mmol).[4] After 1h the reaction is warmed to room temperature for 2h after which it was poured into ice-water and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> twice. The combined organic layers were washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash chromatography (5% MeOH/CHCl<sub>3</sub>) to afford Cytosporone E in 87% yield (0.090 g, 0.3211 mmol). Lit. [5] 98.4%ee,  $[\alpha]^{25}_{D}$ -90.7° (*c* 1.00, acetone).  $[\alpha]^{20}_{D}$ -87.6° (*c* 0.99, acetone). <sup>1</sup>H NMR (400 MHz, DMSO,  $\delta$ ): 9.9 (s, 1H), 9.4 (s, 1H), 9.3 (s 1H), 6.68 (s, 1H), 5.40 (dd, *J* = 2.8, 7.5 Hz, 1H), 2.11 (m, 1H), 1.59 (m, 1H), 1.30–1.16 (m, 10H), 0.84 (t, *J* = 7.1 Hz, 3H). IR (KBr): 3408, 2924, 2853, 2258, 1739, 1628, 1519, 1494, 1346, 1146, 1075, 1024, 999, 869, 765, 637 cm<sup>-1</sup>. <sup>13</sup>C NMR (100.6 MHz, DMSO,  $\delta$ ): 170.8, 147.8, 140.3, 139.9, 129.5, 116.2, 102.0, 79.6, 32.8, 31.6, 29.1, 29.0, 24.6, 22.5, 14.3. LRMS-EI<sup>+</sup> (*m*/*z*): [M-H]<sup>+</sup> 279 (100), 235 (5). HRMS-TOF-ES<sup>+</sup> (*m*/*z*): [M-H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>O<sub>5</sub>, 279.1311, found 279.1233

## References

[1] M. A. Brimble and C. J. Bryant, Org. Biomol. Chem. 2007, 5, 2858.

[2] J. M. Cabrera, J. Tauber, and Michael J. Krische, Angew. Chem. Int. Ed. 2018, 57, 1390.

[3] R. Mirabdolbaghi and T. Dudding, Org. Lett. 2012, 14, 3748.

[4] J. D. Hall, N. W. Duncan-Gould, N. A. Siddiqi, J. N. Kelly, L. A. Hoeferlin, S. J. Morrison and J. K. Wyatt, *Bioorg. Med. Chem.* 2005, **13**, 1409.

[5] T. Ohzeki and K. Mori, Biosci. Biotechnol. Biochem. 2003, 67, 2584.

## <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra-





































































## **HPLC data:**

## 3-allyl-5,7-dimethoxyisobenzofuran-1(3H)-one (8)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major} = 30.91 \text{ min}$ , area% =98.4586), ( $t_{minor}$ =37.13 min, area% =1.5414), 254nm UV detector.





## 3-allyl-5,6-dimethoxyisobenzofuran-1(3*H*)-one (9)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major}$ =20.51 min, area% =97.0743), ( $t_{minor}$ =24.78 min , area% =2.9257), 254nm UV detector.





## 3-allyl-4,5,6-trimethoxyisobenzofuran-1(3*H*)-one (10)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1 mL/min, ( $t_{major}$ =18.43 min, area% =99.5680), ( $t_{minor}$ =21.82 min , area% =0.4320), 254 nm UV detector.





## 3-allylisobenzofuran-1(3H)-one (11)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major} = 20.87 \text{ min}$ , area% =98.0672), ( $t_{minor} = 24.72 \text{ min}$ , area% =1.9328), 254nm UV detector.



## 3-allyl-6-methoxyisobenzofuran-1(3*H*)-one (12)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major}$ =17.91 min, area% =98.6356), ( $t_{minor}$ =21.45 min, area% =1.3644), 254 nm UV detector.



## 7-allyl-[1,3]dioxolo[4,5-*f*]isobenzofuran-5(7*H*)-one (13)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major} = 12.47 \text{ min}$ , area% =98.5012), ( $t_{minor} = 14.79 \text{ min}$ , area% =1.4988), 254nm UV detector.



## 3-allyl-6-(dimethylamino)isobenzofuran-1(3H)-one (14)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, (t<sub>major</sub>=18.95 min, area% =98.0199), (t<sub>minor</sub>=22.67 min , area% =1.9801), 254nm UV detector.



## 3-allyl-5-bromo-6-(dimethylamino)isobenzofuran-1(3H)-one(15)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major}$ =12.02 min, area% =98.8410), ( $t_{minor}$ =14.17min , area% =1.1590), 254nm UV detector.



## 3-allyl-4-bromo-6-(methylamino)isobenzofuran-1(3H)-one(16)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major}$ =30.52 min, area% =98.4807), ( $t_{minor}$ =36.65 min, area% =1.5193), 254nm UV detector.



## 8-allyl-[1,3]dioxolo[4,5-e]isobenzofuran-6(8H)-one (17)

HPLC conditions: Chiralcel OJ column, *n*-Hexane/2-Propanol (90/10), 1.0 mL/min, ( $t_{major}$ =14.03 min, area% =99.0390), ( $t_{minor}$ =16.67 min , area% =0.9610), 254nm UV detector.



## **IR Spectra**



## 1. (1*S*,9*S*)-10,10-dimethyl-5-pyridin-2-yl-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-triene (3)

2. (1*S*,8*R*,9*S*)-(10,10-dimethyl-5-pyridin-2-yl-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7),3,5-trien-8-yl)-diphenyl-methanol (4)



# 3. (1*S*,8*R*,9*S*)-2-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-



trien-8-yl)-1,3-diphenyl-propan-2-ol(5)

4. (1*S*,8*R*,9*S*)-1-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-trien-8-yl)-cyclohexan-1-ol (6)



# 5. (1*S*,8*R*,9*S*)-2-(10,10-dimethyl-5-(pyridin-2-yl)-6-aza-tricyclo[7.1.1.0<sup>2,7</sup>]-undeca-2(7)-3,5-trien-8-yl)-propan-2-ol (7)



6. 3-allyl-5,7-dimethoxyisobenzofuran-1(3H)-one (8)



![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

8. 3-allyl-4,5,6-trimethoxyisobenzofuran-1(3H)-one (10)

![](_page_59_Figure_4.jpeg)

![](_page_60_Figure_1.jpeg)

## 9. 3-allylisobenzofuran-1(3*H*)-one (11)

10. 3-allyl-6-methoxyisobenzofuran-1(3*H*)-one (12)

![](_page_60_Figure_4.jpeg)

73

72

71

![](_page_61_Figure_1.jpeg)

11. 7-allyl-[1,3]dioxolo[4,5-f]isobenzofuran-5(7H)-one (13)

![](_page_61_Figure_3.jpeg)

13415

1048.0

1467.7

12. 3-allyl-6-(dimethylamino)isobenzofuran-1(3H)-one (14)

![](_page_61_Figure_5.jpeg)

![](_page_62_Figure_1.jpeg)

## 13. 3-allyl-5-bromo-6-(dimethylamino)isobenzofuran-1(3H)-one(15)

![](_page_62_Figure_3.jpeg)

![](_page_62_Figure_4.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

16. 3-heptyl-4,5,6-trimethoxyisobenzofuran-1(3H)-one (18)

![](_page_63_Figure_4.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_64_Figure_2.jpeg)