Supporting Information

Continuous flow kinetic resolution of non-equimolar mixture of diastereoisomeric alcohol using structured monolithic enzymatic microreactor

Daniel Jan Strub1,2,*, Katarzyna Szymańska3,*, Zofia Hrydziuszko1, Jolanta Bryjak1 Andrzej Bolesław Jarzębski3,4

1Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
2Liquid Technologies Ltd, Chełmońskiego 12, 51-630 Wrocław, Poland
3Department of Chemical Engineering, Silesian University of Technology, M. Strzody 7, 44-100 Gliwice, Poland
4Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

*Both authors contributed equally to this work

Table of Contents

Fig. 1S. Image of the applied monolithic microreactor.

Fig. 2S. Exemplary chromatograms of the mixture of isomers of alcohol \((S/R)-1\) (green) and pure minor isomer of alcohol \((S)-1\) (black) and ester \((R)-2\).

Fig. 3S. Exemplary chromatogram of the mixture after the process showing full conversion of the major isomer of alcohol \((R)-1\) to the ester \((R)-2\).
Fig. 1S. Image of the applied monolithic microreactor.

Fig. 2S. Exemplary chromatograms of the mixture of isomers of alcohol \((S/R)-1 \) (green), ester \((S/R)-2 \) (purple) and pure minor isomer of alcohol \((S)-1 \) (black) and major isomer of ester \((R)-2 \) (black).
Fig. 3S. Exemplary chromatogram of the mixture after the process showing full conversion of the major isomer of alcohol \((R)-1\) to the ester \((R)-2\).