Electronic Supporting Information

The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR

aInstitute for Chemical Technology and Polymer Chemistry, bInstitute of Catalysis Research and Technology, and cInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
dDipartimento di Energia, Laboratorio di Catalisi e Processi Catalitici, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
eLeibniz-Institut für Katalyse e. V. an der Universität Rostock (LIKAT) Albert-Einstein-Str. 29a, 18059 Rostock, Germany
fN.D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia

* Corresponding author:
Jan-Dierk Grunwaldt, E-mail: grunwaldt@kit.edu

Table S1. Results of analysis of EXAFS spectra of Cu-0.5 and Cu-1.2 catalysts measured under dry air at 350 °C.

<table>
<thead>
<tr>
<th></th>
<th>CN (O) / d (Cu-O)</th>
<th>CN (Cu) / d (Cu-O-Cu)</th>
<th>CN (Al) / d (Cu-O-Al)</th>
<th>σ² (Å²)</th>
<th>δE₀ (eV)</th>
<th>ρ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-0.5 Dry air 350 °C</td>
<td>2.4±0.4</td>
<td>0.37±0.24</td>
<td>n.a.</td>
<td>1.9±1.9</td>
<td>-6.1±1.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.88±0.01 Å</td>
<td>2.91±0.05 Å</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-1.2 Dry air 350 °C</td>
<td>3.0±0.4</td>
<td>1.0±0.5</td>
<td>n.a.</td>
<td>8.4±2.4</td>
<td>-2.8±1.3</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>1.92±0.01 Å</td>
<td>2.96±0.03 Å</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure SI1. NOx conversion during NH3-SCR over the tested Cu-zeolites measured in the laboratory plug-flow reactor. Conditions: 1000 ppm NO, 1000 ppm NH3, 10 % O2, 5 % H2O, balance N2, at (a) GHSV 50 000 h⁻¹ and (b) GHSV 100 000 h⁻¹.
Figure SI2. Oxidation of NO (a) and oxidation of NH$_3$ (b) over tested Cu-zeolites measured in the laboratory plug-flow reactor. Conditions: 1000 ppm NO or 1000 ppm NH$_3$, 10 % O$_2$, 5 % H$_2$O, balance N$_2$, GHSV 200 000 h$^{-1}$.

Figure SI3. Effect of water vapor concentration on (a) the conversion of NO and (b) formation of N$_2$O during NH$_3$-SCR over Cu-1.2 catalyst. Conditions: 1000 ppm NO, 1000 ppm NH$_3$, 10 % O$_2$, 0 - 5 % H$_2$O, balance N$_2$, GHSV 200 000 h$^{-1}$.
Figure S14. Ammonia TPD after NH$_3$ adsorption at 150 °C on Cu-1.2 followed by He flushing. NH$_3$ was adsorbed from the following feed: 1000 ppm NH$_3$, 0 % (black line) H$_2$O and 5 % (red line) H$_2$O (N$_2$ balance). GHSV was kept at 50 000 h$^{-1}$.

Figure S15. Operando XANES spectra of (a) Cu-0.5 and (b) Cu-1.2 measured at 400 °C under SCR feed. The spatially resolved spectra are measured at equidistant points (the first and the last points are at 0.5 mm from the inlet / outlet of the 7 mm long catalyst bed, an additional point is measured for Cu-0.5 at the inlet-most measurable position). Conditions: 1000 ppm NO, 1000 ppm NH$_3$, 10 % O$_2$, 1.5 % H$_2$O, balance He, GHSV 200 000 h$^{-1}$.
Figure SI6. Reference spectra obtained from NH$_3$-TPR of (a) Cu-0.5 and (b) Cu-1.2 using MCR-ALS as well as the concentration profiles for those components during TPR-XANES of (c) Cu-0.5 and (d) Cu-1.2. From the comparison with the large amount of available high-energy resolution XAS spectra of Cu sites in SSZ-13 (Fig. S5), spectrum Ref. 1 can be attributed to a mixture of Cu$^{2+}$ and Cu$^+$ sites (when no water is dosed with NH$_3$) or pure Cu$^{2+}$ in the presence of water vapour. Spectral component named Ref. 2 originates from Cu$^+$ sites with adsorbed ammonia (a complex with linear geometry), while high-temperature component Ref. 3 shows a spectrum of Cu$^+$ sites without direct coordination to ammonia. Thus, conversion from component “Ref. 2” to “Ref. 3” represents desorption of ammonia from reduced Cu$^+$ sites.
Figure SI7. (a) Reference spectra used for linear combination analysis of operando XANES recorded under SCR conditions. (b) Spectra of Cu-1.2 zeolite acquired earlier [15] under model conditions.

Figure SI8. Conversion of NO and total fraction of Cu\(^+\) (normalized to all Cu species) obtained by LCA of XANES spectra measured during operando XAS studies at SLS. Values reported for (a) Cu-0.5 and (b) Cu-1.2 catalysts. The fraction of Cu\(^+\) is reported for inlet of the catalyst bed. The error bars of the LCA are within 10 %. Conditions: 1000 ppm NO, 1000 ppm NH\(_3\), 10 % O\(_2\), 1.5 % H\(_2\)O, balance He, GHSV 200 000 h\(^{-1}\).
Figure SI9. Operando FT EXAFS spectra (uncorrected for the phase shift) of Cu-1.2 measured at (a) 200 °C and (b) 500 °C under SCR feed. The spatially resolved spectra are measured at equidistant points (the first and the last points are at 0.5 mm from the inlet / outlet of the 7 mm long catalyst bed. Conditions: 1000 ppm NO, 1000 ppm NH₃, 10 % O₂, 1.5 % H₂O, balance He, GHSV 200 000 h⁻¹.

Figure SI10. In situ vtc-XES measured on Cu-1.2 at 275 °C, 350 °C and 425 °C. Conditions: 1000 ppm NO, 1000 ppm NH₃, 10 % O₂, 1.5 % H₂O, balance He, GHSV 200 000 h⁻¹.