Supporting Information

Aryl bis-sulfonamides bind to the active site of a homotrimeric isoprenoid biosynthesis enzyme IspF and extract the essential divalent metal cation cofactor

Katharina Roota§, Konstantin Barylyuka§, Anatol Schwaba, Jonas Thelemanna, Boris Illarionovb, Julie Geista, Tobias Gräwertb, Adelbert Bacherc, Markus Fischerb, François Diedericha, Renato Zenobia

a Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
b Hamburg School of Food Science, University of Hamburg, Hamburg, Germany.
c Department of Chemistry, Technical University Munich (TUM), Garching, Germany.
§K.R. and K.B. contributed equally to this work.
† Present address: Department of Biochemistry, University of Cambridge, Hopkins building, Downing Site, Tennis Court Road, CB2, 1QW, United Kingdom.

Experimental

Materials

All chemicals used were of analytical grade or higher. Ammonium acetate (>99.0% for LC-MS), cesium iodide (Analytical standard for high-resolution mass spectrometry) and dimethylsulfoxide (DMSO) were purchased from Fluka Chemie AG (Buchs, Switzerland). Ultrapure water was obtained from Merck Millipore (Zug, Switzerland). Phenylmethanesulfonyl flouride (PMSF) and ethylenediaminetetraacetic acid (EDTA) were purchased from Sigma (Buchs, Switzerland). Recombinant IspF from A. thaliana was expressed and purified in-house.

Aryl bis-sulfonamide compounds (8, 9, 10, 11, 12, 13) were synthesized as in[1] and used without further purification. Stock solutions at a concentration of 50 mM were prepared in DMSO. The structures of the individual compounds, their molecular weight, IC50 values in complex with AtIspF determined in vitro[1] are summarized in Table SI1.

Buffer Exchange. AtIspF was buffer-exchanged against 200 mM ammonium acetate (pH = 8.0) overnight at 4°C at 600 rpm using Slide-A-Lyzer MINI dialysis devices MWCO 7000 Da (Thermo Scientific, Switzerland).
Determination of the Protein Concentration. The protein concentration was determined by measuring the absorbance at 280 nm with a Genesys 10S UV/Vis spectrophotometer (Thermo Scientific, Madison, WI, USA) using disposable plastic UV cuvettes (UVette, Vaudax-Eppendorf AG, Schönenbuch/Basel, Switzerland). Aqueous ammonium acetate solution (c = 200 mM; pH = 8.0) was used as a blank. The concentration of monomeric AtIspF was calculated according to Beer-Lambert law (using the extinction coefficient $\varepsilon_{280} = 8490$ cm$^{-1}$ M$^{-1}$).

Computational Docking Studies. The structure-based analysis was performed on the crystal structure of CMP-bound AtIspF (PDB ID: 2PMP).[2] Representative for other substituents, 10 was chosen. Modeling of two ligands in the active site was performed using the program MOLOC,[3] and in line with the experimental results, binding without involvement of the catalytic zinc ion to the enzyme was assumed. Ligands were positioned to be in agreement with the previously reported structure-activity relationship,[1] and to account for the conformational preferences of their functional groups. The conformation of aryl-sulfonamides is strongly dictated by stereoelectronic and steric interactions, as evident from crystallographic data of the CSD database and DFT calculations (Figure 5b).[4, 5] The π-orbital of an aryl substituent on the sulfonamide favorably bisects the O=S=O angle, which has been accounted for by a C_{ar}–C_{ar}–S–N angle constraint of 90±15° in our modeling. Along the C–S–N–C dihedral a staggered conformation with the nitrogen lone pair bisecting the O=S=O angle is preferred, resulting in a gauche arrangement of carbon substituents on the nitrogen and sulfur atom. For this dihedral, the majority of CSD occurrences fall in a range of 60–90° which led us to assume 75±15° as a constraint. The sulfonamide groups are largely buried in the binding pocket and establish polar interactions with Lys135, Lys107 and Ser38, but also engage in hydrophobic contacts such as the C_{ar}–H···O interaction with the side chain phenyl of Phe79.

To account for the different spatial demand of the various inhibitors (Scheme 2), the substituted positions were oriented towards the periphery or allowed a suitable exit vector. Inhibitors bearing bromine substituents on the diamine scaffold constitute the most active derivatives of the ligand class. Superior inhibition and binding of bromide over the corresponding methyl derivatives, such as 10 vs. 13, suggest favorable halogen bonding interactions of the two halide substituents.[6] In the modeled binding mode, one inhibitor establishes a halogen bond at a close to ideal geometry of 160° to
the backbone carbonyl group of Gly61. The second ligand positions the two bromine
substituents at close distance above and below the side chain carboxylate of Glu138
such that a small rotation of the carboxylate in either direction would result in a
similar, highly favorable interaction.[7, 8]

Table SI1: Key characteristics of the aryl bis-sulfonamide inhibitors of AtIspF.[1]

<table>
<thead>
<tr>
<th>Name</th>
<th>Molecular weight/ Da</th>
<th>IC$_{50}$/µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>732.10</td>
<td>0.24</td>
</tr>
<tr>
<td>9</td>
<td>704.05</td>
<td>0.53</td>
</tr>
<tr>
<td>10</td>
<td>574.31</td>
<td>5.6</td>
</tr>
<tr>
<td>11</td>
<td>555.79</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>485.97</td>
<td>133</td>
</tr>
<tr>
<td>13</td>
<td>444.57</td>
<td>>500</td>
</tr>
</tbody>
</table>

Metal Cation Extraction from AtIspF

A stock protein solution at a concentration of 98 µM was mixed with EDTA ($c = 1$
mM, pH = 8.0) and stirred for 3 h at room temperature. The excess of EDTA was then
removed by dialysis.

Protein Denaturation

In order to determine the exact mass of the protein using ESI-MS, 1µL of AtIspF
stock solution was diluted (1:10) in 1% (vol.) aqueous formic acid and loaded on
ZipTip C18 (Millipore AG, Zug, Switzerland) preconditioned with acetonitrile and
equilibrated with 1% aqueous formic acid. 30 µL of 1% aqueous formic acid was
applied to wash the buffer salts and additives. This was followed by elution of the
protein into 20µL of formic acid:acetonitrile:water 1:49.5:49.5 (vol.:vol.:vol.).
Mixing Scheme for the titration Experiments

Scheme I: Mixing scheme visualizing how the protein and ligand solutions were mixed for the titration experiments.

Data Analysis

All data analysis was done in MATLAB R2017a (MathWorks Inc., Natick, MA, USA). When necessary, the spectra were background-adjusted using msbackadj function from MATLAB Bioinformatics Toolbox and smoothed using Savitzky-Golay algorithm implemented in sgolayfilt MATLAB function. In Savitzky-Golay smoothing, the 2nd order polynomial function and a window of 9-25 samples were used. The spectra normalization was done using msnorm function from MATLAB Bioinformatics Toolbox.

Expression, Purification, and Characterization of Recombinant AtIspF

Synthetic gene of the full-length wild-type (wt) IspF from Arabidopsis thaliana (AtIspF; UniProt accession number ISPF_ARATH) fused at the N-terminus with the tobacco etch virus protease (TEV-protease) recognition site (ENLYF) was inserted into a Novagen pET-15b expression vector (Merck & Cie, Schaffhausen, Switzerland) at the Ndel and BamHI cloning sites. The gene synthesis and cloning into the expression vector was performed by GenScript (GenScript USA Inc., Piscataway, NJ, USA). The resulting recombinant product consisted of the N-terminal His6-tag, a linker containing recognition sites for thrombin and TEV-protease, and wt AtIspF.
The recombinant polypeptide was 205-amino-acid-residue-long and had a theoretical molecular weight of 22186.3 Da.

Scheme SI 2: Amino acid sequence of the recombinant fusion protein His₆-TEVrs-AtIspF. The N-terminal His₆-tag sequence is highlighted in blue, the TEV-protease recognition site sequence is highlighted in red. The sequence of full-length mature wild-type IspF from *A. thaliana* (UniProt ID ISPF_ARATH; residues number 53-231 in UniProt notation) is shown in bold.

His₆-AtIspF was expressed in soluble form in *E. coli* One Shot™ BL21 Star™ (DE3) host cells (Life Technologies Europe B.V., Zug, Switzerland). Cells were precultured in 10 ml of LB broth containing 0.1 g L⁻¹ ampicillin for 12 h at 37 °C with agitation (240 rpm, orbital shaker). The starting culture was inoculated into 2 L of LB broth containing 0.1 g L⁻¹ ampicillin and was cultured at 37 °C with continuous agitation (120 rpm, orbital shaker) for approximately 3.5 h until reached OD_{600 nm} = 0.8. The expression of the target transgene was induced by adding IPTG to a final concentration of 1 mM. The expression was performed for 4 h at 37 °C with continuous agitation (120 rpm, orbital shaker). The cells were harvested by centrifugation and stored at -80 °C until used.

For extraction of the recombinant fusion protein, the cells were resuspended in a lysis buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 20 mM imidazole, 1 mg mL⁻¹ lysozyme, 0.1 mM PMSF, 1 mM DTT) at a proportion of 10 ml buffer per 1 g of wet cell paste and lysed by two consecutive passages through a high-pressure fluid processor Microfluidizer 110S (Microfluidics, Newton, Massachusetts, USA) operated at 40 psi. The homogenate was centrifuged at 25,000 rpm (rotor 45 Ti, Optima L-90 K Ultracentrifuge, Beckman Coulter, Inc.), +4 °C for 1 h. The supernatant containing soluble proteins was collected and processed further.
The target product was isolated from the soluble fraction of host cell lysate by Ni-chelate chromatography on a GE HisTrap-FF column (5 ml bed volume; GE Healthcare, Glattbrugg, Switzerland) using an Akta Prime Plus FPLC system (GE Healthcare, Glattbrugg, Switzerland) equipped with dual-channel fluidics and a UV absorbance and conductivity detectors. The column was equilibrated in elution buffer A (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 20 mM imidazole, 0.5 mM DTT) at a flow rate of 5 mL min\(^{-1}\). After the protein extract was loaded on the column and the \(A_{280}\) nm reading returned to the base line, the protein captured on the Ni-NTA resin was eluted with elution buffer B (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 300 mM imidazole, 0.5 mM DTT) (Scheme SI3a). The concentration of imidazole in the eluate was reduced back to 20 mM by desalting on a GE HighPrep 26/10 size-exclusion column (MWCO = 5 kDa; GE Healthcare, Glattbrugg, Switzerland) equilibrated in elution buffer A (Scheme SI3b).

The His\(_6\)-TEVrs-\(A\)tIspF fusion protein was digested with the recombinant catalytic domain of TEV-protease to cleave the N-terminal His\(_6\)-tag. After 4 h incubation at room temperature, the reaction mixture was subjected to another round of Ni-chelate chromatography in order to remove the uncleaved fusion protein, the His\(_6\)-tag-containing N-terminal fragment, and the TEV-protease, which also carried N-terminal His\(_6\)-tag (Scheme SI3c). The flow-through fraction from the GE HisTrap-FF column contained high-purity full-length wt AtIspF (Scheme SI3d). Overall, the cloning, expression, and purification strategy used here yielded approximately 18 mg of AtIspF per 1 L of bacterial culture. The coupled-enzyme photometric assay confirmed that the purified enzyme was active. The turnover numbers measured for two AtIspF samples purified in separate batches were 5.9 min\(^{-1}\) and 6.8 min\(^{-1}\). The purified enzyme was also sensitive to synthetic bis-sulfonamide inhibitors in the standard \(IC_{50}\) assay.[9]
Scheme SI 3: Expression and purification of the recombinant AtIspF. (a) Elution profile from the first Ni-chelate chromatography step. (b) SEC elution profile of the eluate fraction obtained from the first Ni-chelate chromatography. (c) Elution profile of the TEV-protease digest from the second Ni-chelate chromatography step. (d) Analysis of protein fractions sampled from consecutive steps of the protein expression and purification workflow by SDS-PAGE (4-12 % Bis-Tris NuPAGE Mini Gel, NuPAGE MES SDS running buffer; Life Technologies Europe B.V., Zug, Switzerland). 1: whole-cell lysate before induction of the transgene expression; 2: whole-cell lysate 4 h post induction; 3: soluble protein fraction; 4: insoluble protein fraction; 5: flow-through fraction from the first Ni-chelate chromatography step; 6: eluate from the first Ni-chelate chromatography step highly enriched in the target fusion protein (band i); 7: void-volume fraction collected from the SEC column; 8: TEV-protease digest containing a minor amount of TEV-protease (band ii) and the two products of digestion, the full-length AtIspF and the N-terminal His-tag-containing peptide (bands iii and iv, respectively); 9: flow-through fraction collected from the second Ni-chelate chromatography step containing highly pure tag-less AtIspF; 10: eluate from the second Ni-chelate chromatography step; M – molecular weight standards (SeeBlue Plus 2, Life Technologies Europe B.V., Zug, Switzerland). The molecular weights of the MW standards are indicated on the sides in kDa.

Molecular Weight of AtIspF Measured by ESI-MS

The spectrum of denatured protein showed a typical broad distribution of peaks in a relatively low m/z range (Figure S11). The measured mass (19225.0 ± 0.3 Da) corresponds to the theoretical molecular weight (19225.1 Da) calculated based on the amino acid sequence (Table S12). As expected, no non-covalent protein complexes survived under denaturing conditions and all the spectral signals were matched to unfolded monomeric protein ions.
Figure SI 1: ESI mass spectrum acquired under denaturing conditions in positive ion mode. The broad charge state distribution shows the unfolded *A*/*IspF* monomer in the low *m/z* range.

Table SI2: – Molecular weight of bare *A*/*IspF* using denaturing- and native ESI-MS.

<table>
<thead>
<tr>
<th></th>
<th>Monomer</th>
<th>Dimer</th>
<th>Trimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>19225.1</td>
<td>38450.2</td>
<td>57675.3</td>
</tr>
<tr>
<td>Denaturing</td>
<td>19225.0 ± 0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ESI Native</td>
<td>19224.1 ± 1.0</td>
<td>38449.2 ± 7.1</td>
<td>57680.7 ± 5.4</td>
</tr>
<tr>
<td>ESI CID</td>
<td>19224.03 ± 0.4</td>
<td>38451.20 ± 2.1</td>
<td>-</td>
</tr>
</tbody>
</table>

Experimentally estimated masses of neutral species were calculated from *m/z* values of multiply-charged ions attributed to monomers, dimers, and trimers in Figure 1. These values are compared to theoretical molecular weights calculated from amino acid sequences. Deviations between experimental and theoretical values are indicated.
Figure SI 2: Evaluation of non-specific binding of CDP-ME to \textit{AtIspF}. PMSF-inactivated trypsin was mixed with \textit{AtIspF} and measured before incubation (top spectrum) and after incubation (bottom spectrum) with CDP-ME. Associated signals are highlighted in yellow boxes and were attributed to trypsin (left box, green) and \textit{AtIspF} (right box, yellow). Upon CDP-ME addition, mass shifts corresponding to 1, 2 or 3 CDP-ME molecules bound to \textit{AtIspF} trimer (indicated by dotted lines) were observed exclusively. Negligible complex formation by CDP-ME and trypsin was detected.

Formation of nonspecific ligated states is well known in ESI-MS and originates from ligands sticking to the protein surface upon droplet shrinkage.[10] ESI-born non-specific ligand binding due to electrostatic attraction has been shown to proceed equally for all protein ions, regardless of their molecular weight.[10] Therefore, to rule out the possibility of nonspecific binding of the substrate to \textit{AtIspF}, we added PMSF-inactivated trypsin as a reference protein (P_{REF}) to the mixture of \textit{AtIspF} with 7 (Figure SI2). We expected to detect complexes of trypsin with 5 or 7 should ESI-related nonspecific binding be pronounced.
Figure SI 3: Titration series of \(A.d.lispF \) (c\text{trimer} = 8 \mu M) mixed with compound 8 (\(L \)) in the absence (a) and presence (b) of Zn\text{2+} (150 mM ammonium acetate, 1% DMSO, pH = 8.0, positive mode). a) \(A.d.lispF \) was incubated with 8 in the absence of Zn\text{2+} resulting in complexes containing up to 6 ligands. The signal distribution shows subsequent binding of the ligands, which suggests that all 6 binding sites are equivalent. b) Zn\text{2+} saturated \(A.d.lispF \) (3:1) was mixed with increasing concentrations of 8 (T:L ratio increasing from 1:0 to 1:7). The Zn\text{2+}: protein ratio gets scrambled upon increasing the \(L \) concentration. Zn\text{2+} depleted states are observed for the ligand-free protein peak, 1:1 and 1:2 protein-ligand complex peaks (containing 2, 1, 0 Zn\text{2+} ions). Further, for ligand-bound states 1:3 onwards a superstoichiometric number of Zn\text{2+} ions bound was observed.
Figure SI 4: Titration series of *At*IspF (c_{trimer} = 8 µM) mixed with 9 in the absence (a) and presence (b) of Zn^{2+} (150 mM ammonium acetate, 1% DMSO, pH = 8.0, positive mode). a) *At*IspF was incubated with 9 in the absence of Zn^{2+} resulting in complexes containing up to 6 ligands. The signal distribution shows subsequent binding of the ligands, which suggests that all 6 binding sites are equivalent. b) Zn^{2+} saturated *At*IspF (3:1) was mixed with increasing concentrations of 9 (c_{L} = 0-50 µM). The Zn^{2+}: protein ratio gets scrambled upon increasing the bis-sulfonamide concentration. Zn^{2+} depleted states are observed for the ligand-free protein peak, 1:1 and 1:2 protein-ligand complex peaks (containing 2,1,0 Zn^{2+} ions). Further, for ligand-bound states 1:3 onwards a superstoichiometric number of 4-6 Zn^{2+} ions bound were observed.
Figure SI 5: Titration series of *At*ispF (c_{trimer} = 8 µM) mixed with 11 in the absence (a) and presence (b) of Zn²⁺(150 mM ammonium acetate, 1% DMSO, pH = 8.0, positive mode). a) *At*ispF was incubated with 11 in the absence of Zn²⁺ resulting in complexes containing up to 6 ligands. The signal distribution shows subsequent binding of the ligands, which suggests that all 6 binding sites are equivalent. b) Zn²⁺ saturated *At*ispF (3:1) was mixed with increasing concentrations of 11 (c_L = 0-100 µM). The Zn²⁺: protein ratio gets scrambled upon increasing the bis-sulfonamide concentration. Zn²⁺ depleted states are observed for the ligand-free protein peak, 1:1 and 1:2 protein-ligand complex peaks (containing 2,1,0 Zn²⁺ ions). Further, for ligand-bound states 1:3 onwards a superstoichiometric number of 4-6 Zn²⁺ ions bound were observed.
Figure SI 6: Titration series of *A. IspF* (*c*_{trimer} = 8 µM) mixed with 12 in the absence (a) and presence (b) of Zn²⁺. a) *A. IspF* was incubated with 12 in the absence of Zn²⁺ resulting in complexes containing up to 6 ligands. The signal distribution shows subsequent binding of the ligands, which suggests that all 6 binding sites are equivalent. b) Zn²⁺ saturated *A. IspF* (3:1) was mixed with increasing concentrations of 12 (*c*_L = 0-100 µM). The Zn²⁺: protein ratio gets scrambled upon increasing the sulfonamide concentration. Zn²⁺ depleted states are observed for the ligand-free protein peak, 1:1 and 1:2 protein-ligand complex peaks (containing 2, 1, 0 Zn²⁺ ions). Further, for ligand-bound states 1:3 onwards a superstoichiometric number of 4-6 Zn²⁺ ions bound were observed.
Figure SI 7: Titration series of AtIspF (c_{trimer} = 8 µM) mixed with increasing concentrations of compound 13 in the absence (a) and presence (b) of Zn^{2+} (150 mM ammonium acetate, 1% DMSO, pH = 8.0, positive mode) that was used as a negative control, since it previously showed no inhibition in kinetic assays. a) AtIspF was incubated with 13 in the absence of Zn^{2+} resulting in complexes containing up to 6 ligands. The signal distribution shows subsequent binding of the ligands. b) In the presence of Zn^{2+}, nearly no complex formation was observed. A less intense complex formation was observed in the presence of Zn^{2+} compared to when no Zn^{2+} was added. This suggests that Zn^{2+} ion alters the binding properties of the ligand.
Figure SI 8: Titration of AtIspF with increasing concentrations of DMSO (0-1% v/v). A mass spectrum of AtIspF without DMSO is given for reference (a). Increasing the DMSO concentration up to 1% results in a shift of the charge state distribution to lower charge states as well as peak broadening.

The charge state distribution (CSD) of native-like protein ions shifts to a lower number of charges upon the addition of DMSO.[11] Accordingly, we observed a shift of CSD of AtIspF from the dominant trimer signal carrying 14^+ charges in the absence of DMSO to 12^+ charges in the presence of 1% DMSO (Figure SI8).
Figure SI 9: Evaluation of non-specific binding of 8 and inactive 13 to AtIspF. PMSF-inactivated trypsin was mixed with AtIspF alone (top spectra in a and b) and upon incubation (bottom spectra in a and b) with 8 and 13, respectively. Associated were attributed to trypsin (left box, green) and AtIspF (right box, yellow). Upon the addition of 8, mass shifts corresponding to up to three molecules 8 bound to AtIspF trimer exclusively (indicated by dotted lines) were observed. Contrarily, no complex formation by 8 or 13 and trypsin was detected, respectively.

To determine the fraction of nonspecific protein-ligand complexes (8 and 13, respectively) generated during the electrospray process, PMSF-inactivated trypsin was added to the mixture as a reference protein (PREF) (Figure SI9). However, no ligated states were observed for PREF with either compound. Thus, we can conclude
that the complexes between bis-sulfonamides and AtIspF (in the absence of Zn\(^{2+}\)) are not due to ESI artifacts but are indeed present in solution.

ESI-MS Detects \([8–Zn]^{2-}\) Chelate Complex in Solution

X-Ray crystallography demonstrated that the bis-sulfonamide inhibitors form a dimeric chelation complex with Zn\(^{2+}\) ion [1]. **Figure S110** shows the mass spectrum of 8 incubated with Zn\(^{2+}\) at a 2:1 ratio in positive ion mode. After mixing the ligand with Zn\(^{2+}\) a signal distribution next to the bare ligand corresponding to the chelated Zn\(^{2+}\) complex dominates the spectrum. The signal distributions corresponding to the bare ligand as well as the chelated complex are zoomed in and compared with theoretical signal distributions, which are shown below the spectrum for comparison. The results suggest, that ligand 8 exists in solution in a free and Zn\(^{2+}\) -bound forms.

Bis-sulfonamides are known to chelate Zn\(^{2+}\) ions with association constants \((K_a)\) of \(15.6 \times 10^6\) M\(^{-2}\).[1]

![Figure S110: Comparison of a simulated and measured native ESI mass spectra of 8 mixed with Zn\(^{2+}\) at a 2:1 ratio (150 mM ammonium acetate, pH=8.0, positive mode). The simulated isotopic distribution is shown in grey. Insets show zoomed in signal distributions of the bare 8, as well as the chelated 2:1 complex with Zn\(^{2+}\).](image-url)
Docking of Bis-Sulfonamide Ligands in the Presence of Zn

Bis-sulfonamide ligands have previously been shown to form a dianionic 2:1 complex with Zn\(^{2+}\) upon deprotonation of the sulfonamide N-H.[1] While Zn\(^{2+}\) cofactor depletion might be a possible mode of inhibition, enzymatic assays in the presence of excess Zn\(^{2+}\) have shown undiminished inhibition and suggest complex binding to the active site. The crystal structure of the [L\(_2\)Zn]\(^{2-}\) complex with ligand 10 shows a tetrahedral coordination with the Zn\(^{2+}\) ion. This complex was successfully modeled in the active site of AflspF (PDB ID: 2PMP, Figure S11a). For the model the coordination geometry of the Zn\(^{2+}\) was constrained. For the Zn\(^{2+}\), as well as for the Zn-free binding mode, conformational preferences of the aryl-sulfonamide were taken into account (Figure S11b).

Figure S11: Proposed binding mode of the [L\(_2\)Zn]\(^{2-}\) complex with 10 in the active site of AflspF (a, PDB ID: 2PMP,[2] 2.3 Å), including conformational constraints for aryl sulfonamides (b). The mesh surface spans the volume of the active site.[12] Atom coloring: Br brown, N blue, O red, S yellow, distances are given in Å.

The binding mode of the [L\(_2\)Zn]\(^{2-}\) complex of 10 shows coordination of the zinc ion with Asp66, which is similar to the binding mode of CDP, where a
magnesium ion binds to the diphosphate moiety and to Asp66. [13] One ligand molecule of 10 is deeply buried in the pocket, while the other partially protrudes into the bulk. The buried ligand shows aromatic stacking interactions of one tolyl substituent to the backbone amide of His37, while the other tolyl is sandwiched between side-chains of Thr136 and Lys107. The latter possibly also displays cation-π interactions with Lys107. The more exposed ligand has two edge-to-face interactions of the tolyl and dibromobenzyl moieties with the His37 side chain. The second tolyl group of this ligand has Van-der-Waals interactions with the side chains of Thr136, Arg105 and Lys139.

References

