Supplementary information for

Radical Difluoromethylthiolation of Aromatics Enabled by Light

Jianbin Li,^{+,+} Dianhu Zhu,^{+,+} Leiyang Lv⁺ and Chao-Jun Li^{+,§,+}

Table of Contents

1. General information	
2. General procedures	2
2.1. General procedures for oxidation of difluoromethylthioethers	
2.2. General procedures for arylthiolation reactions	4
2.3. General procedures for radical trapping experiments	4
2.4. Product inspection	5
2.5. Control experiments	5
3. Supplementary figures and tables	
4. Characterization data for compounds	
5. NMR spectra	
6. References	

[†]Department of Chemistry and FQRNT Centre in Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada

 $^{\ddagger}\text{Those}$ two authors contributed equally to this work $^{\$}\text{Lead}$ Contact

*Correspondence: cj.li@mcgill.ca

1. General information

Solvents and reagents were purchased from Sigma-Aldrich and Fisher scientific chemical companies and were used without further purification unless otherwise specified. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra (CCl₃F set at 0 ppm) were recorded on Bruker 500 MHz spectrometers, which uses the deuterium lock signal to reference the spectra. The solvent residual peaks, e.g., of chloroform (CDCl₃: δ 7.28 ppm and δ 77.0 ppm), were used as references. Data are reported as follows: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublet, etc), coupling constant (J/Hz) and integration. All NMR spectra were recorded at room temperature. High-resolution mass spectrometry was conducted by using atmospheric pressure chemical ionization (APCI) or electro-spraying ionization (ESI), and was performed by McGill University on a Thermo-Scientific Exactive Orbitrap. Protonated/deprotonated molecular ions $(M \pm H)^+$ or sodium adducts (M+Na)⁺, were used for empirical formula confirmation. Infrared spectroscopic data was collected by the Bruker ALPHA FTIR spectrometer as samples were applied either in KBr pellets or in neat forms. All reactions are stirred magnetically unless otherwise specified. Short packed column chromatography was performed with E. Merck silica gel 60 (230–400 mesh) or SORBENT silica gel 30-60 µm. Flash colum chromatography was performed Isolera[™] Prime advanced automatic flash purification system. Analytical thin layer chromatography (TLC) was performed using Merck silica gel 60 F254 pre-coated plates (0.25 mm). A standard LZC-4V photoreactor from Luzchem Company, which contains six 2.5 W mercury low pressure lamps with emission at 254 nm, was used in experiments under UV radiation. The reactions were conducted in sealed 5.0 mL quartz tubes. The experiments under visible light were performed using 40 W compact fluorescent lamps (CFL) and the reactions were conducted in sealed tubes. Both setups are equipped with fans for efficient temperature maintenance.

Figure S1. A. UV photoreactor (6*2.5 W, 254 nm); B. CFL setup (2*40W, side view); C. CFL setup (2*40 W, top view)

2. General procedures

The preparation of **1b** is representative and applicable to all difluoromethylthioethers synthesis in this work unless otherwise specified. To a flame-dried reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added the *N*-methylindole **1a** (0.10 mmol, 1.0 equiv), *S*-(difluoromethyl) benzenesulfonothioate **PhSO₂SCF₂H** (0.20 mmol, 2.0 equiv). The resulting mixture was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon (>99.999%). Shortly after, tetrabutylammonium iodide **TBAI** (0.020 mmol, 20 mmol%) in degassed CH₃CN (1.0 mL), which was prepared as Stock solution, was injected into the reaction tube. This procedure is termed Method **A**. The procedure of Method **B** is basically identical to that in **A** except that **TBAI** is absent and the reaction time was prolonged to 48 hours in order to consume the unreacted substrates. Method **C** is specific for the gram-scale experiment (See **33b** for details). Unless otherwise specified, the preparation of difluoromethylthioethers follows the procedure in Method **A**.

The reaction was stirred at room temperature under irradiation by using compact fluorescent lamps (CFL) until the starting material was completely consumed as monitored by GC-MS. *The length ranges from 16 h to 48 h and mostly, 16 h of radiation could result in decent yield.* After complete consumption of the starting material, the reaction mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. The pure desired product was provided after purification by flash column chromatography on silica gel, which furnished the titled compound **1b** as described.

b) Evaluation of mono-/difunctionalization selectivity

Comments on the possible regioselectivity and mono-/difunctionalization issues. During our examination on functional group tolerance of our difluoromethylthiolation protocol, we carefully analyzed the GC-MS spectra and evaluated the regioselectivity. Generally, the most electron rich sites of the substrates are difluoromethylthiolated but for the above compounds, regiomers were observed in GC-MS and the ratios (ranging from 40:1 to 7:1) were obtained by the integration of corresponding peaks in the spectra, assuming the response factors of regiomers are identical. For the difunctionalization, we only observed the bis(difluoromethylthiolation) product in the case of **14b**.

2.1. General procedures for oxidation of difluoromethylthioethers

For **1b**', to a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added the 3-((difluoromethyl)thio)-1-methyl-1*H*-indole **1b** (0.10 mmol, 1.0 equiv), *m*-CPBA (**0.30 mmol, 3.0 equiv**) and CH₂Cl₂ (0.10 M, 1.0 mL). The resulting mixture was stirred at **room temperature**. After **24 hours**, the reaction mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. The pure desired product was provided after purification by flash column chromatography on silica gel, which furnished the titled compound **1b**' as described.

For **1b**", to a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added the 3-((difluoromethyl)thio)-1-methyl-1*H*-indole **1b** (0.10 mmol, 1.0 equiv) and CH₂Cl₂ (0.50 mL). In another reaction tube, *m*-CPBA (**0.10 mmol**, **1.0 equiv**) was dissolved in CH₂Cl₂ (0.50 mL). The resulting mixture was stirred at **0** °C then with *m*-CPBA (**0.10 mmol**, **1.0 equiv**) CH₂Cl₂ solution added dropwise. The reaction mixture was stirred at **0** °C for **4 hours**. After that, the mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. The pure desired product was provided after purification by flash column chromatography on silica gel, which furnished the titled compound **1b**" as described.

2.2. General procedures for arylthiolation reactions

The preparation of **30b** is representative and applicable to all diarylthioethers synthesis in this work unless otherwise specified. To a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added the 1, 3, 5-trimethoxybenzene **24a** (0.30 mmol, 3.0 equiv), *S*-phenyl benzenesulfonothioate (0.10 mmol, 1.0 equiv) and CH₃CN/THF (9:1, 0.033 M). The resulting mixture was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon (>99.999%). The reaction was stirred at room temperature under photo irradiation by using compact fluorescent lamps for 48 hours. The reaction mixture was then diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. The pure desired product was provided after purification by flash column chromatography on silica gel, which furnished the titled compound **30b** as described.

2.3. General procedures for radical trapping experiments

For eq. 1, to a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar was added 1, 3, 5-trimethoxybenzene **24a** (0.10 mmol, 1.0 equiv), *S*-(difluoromethyl) benzenesulfonothioate **PhSO₂SCF₂H** (0.20 mmol, 2.0 equiv), TEMPO (0.20 mmol, 2.0 equiv) and CH₃CN (0.10 M). The resulting mixture was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon (>99.999%). The reaction was stirred at room temperature under photo irradiation by using compact fluorescent lamp for 16 hours. The reaction mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic

solvent was evaporated. Then, the crude was subjected to GC-MS and NMR analysis to determine yield of desired product.

For eq. 2, to a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added *N*-methylindole **1a** (0.10 mmol, 1.0 equiv), *S*-(difluoromethyl) benzenesulfonothioate **PhSO₂SCF₂H** (0.20 mmol, 2.0 equiv), diethyl 2,2-diallylmalonate **34a** (0.10 mmol, 1.0 equiv) and CH₃CN (0.10 M). The resulting mixture was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon (>99.999%). The reaction was stirred at room temperature under photo irradiation by using compact fluorescent lamps for 48 hours. The reaction mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. Then, the crude was subjected to GC-MS and NMR analysis to determine yield of desired product.

For eq. 3, to a reaction tube (10.0 mL) equipped with a teflon-coated magnetic stirring bar were added *S*-(difluoromethyl) benzenesulfonothioate **PhSO₂SCF₂H** (0.20 mmol, 2.0 equiv), diethyl 2,2-diallylmalonate **34a** (0.10 mmol, 1.0 equiv) and CH₃CN (0.10 M). The resulting mixture was evacuated by three freeze-pump-thaw cycles and back-filled with ultra-purified argon (>99.999%). The reaction was stirred at room temperature under photo irradiation by using compact fluorescent lamps for 48 hours. The reaction mixture was evaporated. Then, the crude was subjected to GC-MS and NMR analysis to determine yield of desired product. The pure desired product was provided after purification by flash column chromatography on silica gel.

2.4. Product inspection

During the course of this project, several interesting products were frequently observed in GC-MS, which might clue the reaction mechanism. The formation of iodoarenes was envisioned as a result of trapping iodine radical by arenes, while the *S*-phenyl benzenethiosulfonate could come from the bimolecular dehydration process of benzenesulfenic acid.¹

2.5. Control experiments

S5

In order to probe the mechanistic sight, we performed the following control experiments by pre-mixing the PhSO₂SCF₂H and TBAI (20 mol% catalytic amount in expt.1 and stoichiometric amount in expt.2) and stirring the mixture in the dark. As a result of monitoring the mixtures by ¹H and ¹⁹F NMR, no significant changes in ¹H NMR was observed, and no new signal appeared in ¹⁹F NMR. This indicated that under dark conditions, PhSO₂SCF₂H and TBAI remain unreacted as shown in the stacked plots below (Figure S2a and S2b, both ¹H and ¹⁹F NMR spectra provided).

Figure S2a. ¹H NMR stacked plot of mixtures of PhSO₂SCF₂H and TBAI in the absence of light

Figure S2b. ¹⁹F NMR stacked plot of mixtures of PhSO₂SCF₂H and TBAI in the absence of light

After that, we subjected the mixtures of PhSO₂SCF₂H and TBAI to **light irradiation** and monitored the changes again by ¹H and ¹⁹F NMR. Significant decomposition of PhSO₂SCF₂H in both the catalytic and stoichiometric cases was observed, and complicated reaction mixtures were obtained, which were shown in the following stacked spectra.

Figure S3a. ¹H NMR stacked plot of mixtures of PhSO₂SCF₂H and TBAI after light irradiation

Figure S3b. ¹⁹F NMR spectrum of mixture of PhSO₂SCF₂H (red spot) and 20 mol% TBAI after light irradiation

It is clear that either in the presence of catalytic or stoichiometric quantity of TBAI, PhSO₂SCF₂H would degrade after the irradiation and several new ¹⁹F signals appear. The lightshone mixture was then subjected to GC-MS and ESI analysis; however, no conclusive evidence was obtained to decipher the identity of these mixture. The real mechanism remained to be explored.

In summary, these controlled experiments illustrated the essential role of light in this difluoromethylthiolation reaction. Without other strong evidences, we would like to propose the one in manuscript; however, we are unable to validate or exclude the presence of HF₂CSI or other reactive difluoromethylthiolating species.

3. Supplementary figures and tables

All UV-Vis spectra was obtained by preparing CH₃CN solution of corresponding substrates.

$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & $					
entry ^a	1a : SCF ₂ H	additive(equiv)	time	yield ^b	
1 ^c	1:2	-	16 h	20%	
2	1:2	-	16 h	64%	
3	1:2	-	48 h	80%	
4 ^d	1:2	-	16 h	NR	
5 ^e	1:2	-	16 h	65%	
6 ^f	1:2	-	16 h	NR	
7	1:2	Nal (5 mol%)	16 h	80%	
8	1:2	KI (5 mol%)	16 h	80%	
9	1:2	TBAI (5 mol%)	16 h	86%	

Table 1. Evaluation of various conditions

10	1:2	TBAI (10 mol%)	16 h	90%
11	1:2	TBAI (20 mol%)	16 h	>99% (iso.)
12	1:1.5	TBAI (20 mol%)	16 h	88%
13	1:1	TBAI (20 mol%)	16 h	65%
14	2:1	TBAI (20 mol%)	16 h	80%
15	1:2	TBAI (20 mol%)	8 h	97%

Abbreviations: CFL, compact fluorescence lamp; rt, room temperature; TBAI, tetrabutylammonium iodide; NR, no reaction. ^aAll reactions were conducted with 0.10 mmol **1a**, 0.20 mmol **SCF₂H**, 0.020 mmol TBAI in 1.0 mL CH₃CN under argon with irradiation of two 40W CFL unless otherwise noted. ^bThe yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^c254 nm 2.5W UV lamp (photo-box). ^dAt 4°C. ^eIn hexane (0.10 M). ^fIn the dark.

4. Characterization data for compounds

All the following compounds could be purified either by preparative TLC or column chromatography according to the indicated R_f value (Hex = hexane; PET = petroleum ether; EtOAc = ethyl acetate; DCM = dichloromethane; Ether = diethyl ether). Unless otherwise specified, the isolated mass was recorded based on Method **A**. The experimental data obtained are in agreement with previously reported characterization data.²

3-((Difluoromethyl)thio)-1-methyl-1*H***-indole (1b**, Method **A**: 21.3 mg, > 99% on 0.10 mmol scale; Method **A**: 79.2 mg, 93% on 0.40 mmol scale; Method **B**: 16.0 mg, 75%) was purified by preparative TLC as colorless oil.^{2e}

R_f = 0.67 (PE : EtOAc = 8 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.40-7.28 (m, 4H), 6.69 (t, *J* = 57.9 Hz, 1H), 3.85 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 137.3, 136.1, 130.4, 122.9, 121.1 (t, *J* = 276.2 Hz), 120.9, 119.4, 109.8, 94.2 (t, *J* = 4.2 Hz), 33.2;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.24 (d, *J* = 57.8 Hz, 2F) ppm;

IR (Neat) v = 3121, 3055, 2918, 1513, 1459, 1313, 1240, 1061, 1030, 1017, 971, 758, 750, 737, 542, 463, 428 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₀H₁₀F₂NS Calcd: 214.0497; Found: 214.0499.

3-((Difluoromethyl)thio)-1*H***-indole (2b**, 17.9 mg, 90%) was purified by flash column chromatography as brownish oil.^{2e}

R_f = 0.33 (PE : EtOAc = 8 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 8.46 (bs, 1H), 7.83 (d, *J* = 7.3 Hz, 1H), 7.50 (d, *J* = 2.7 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.34-7.28 (m, 2H), 6.71 (t, *J* = 57.5 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 136.1, 131.8, 129.7, 123.3, 121.3, 121.0 (t, *J* = 275.5 Hz), 119.4, 111.6, 96.8 (t, *J* = 4.2 Hz);
¹⁹F NMR (470 MHz, CDCl₃) δ -92.04 (d, *J* = 57.9 Hz, 2F) ppm;
IR (KBr): υ = 3405, 2963, 1506, 1459, 1408, 1338, 1317, 1292, 1068, 796, 749, 515 cm⁻¹;
HRMS (ESI, M-H⁺) for C₉H₆NF₂S Calcd: 198.0195; Found: 198.0193.

3-((Difluoromethyl)thio)-5-methyl-1*H***-indole (3b**, Method **A**: 18.3 mg, 86%; Method **B**: 15.5 mg, 73%) was purified by preparative TLC as colorless oil.^{2e}

R_f = 0.28 (PE : EtOAc = 8 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 8.40 (bs, 1H), 7.60 (s, 1H), 7.46 (d, *J* = 2.7 Hz, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.13 (dd, *J* = 8.3, 1.3 Hz, 1H), 6.70 (t, *J* = 57.9 Hz, 1H), 2.52 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 134.4, 131.9, 130.9, 129.9, 124.9, 121.1(t, *J* = 276.4 Hz), 118.9, 111.3, 96.1 (t, *J* = 3.8 Hz), 21.5;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.11 (d, *J* = 58.2 Hz, 2F) ppm;

IR (Neat) v = 3677, 3181, 3172, 3160, 3155, 3095, 3061, 3010, 1619, 1544, 1505, 1491, 1441, 1285, 1281, 1192, 1121, 1028, 1006, 985, 943, 828, 733, 641, 608, 574 cm⁻¹;

HRMS (ESI, M-H⁺) for C₁₀H₈F₂NS Calcd: 212.0351; Found: 212.0349.

3-((Difluoromethyl)thio)-7-methyl-1*H***-indole** (**4b**, 17.0 mg, 80%) was purified by preparative TLC as colorless oil.

R_f = 0.77 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 8.42 (bs, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 2.8 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 6.70 (t, *J* = 57.6 Hz, 1H), 2.54 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 135.7, 131.5, 129.3, 123.8, 121.5, 121.1 (t, *J* = 276.4 Hz), 120.8, 117.0, 96.2 (t, *J* = 3.6 Hz), 16.4;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.08 (d, *J* = 57.6 Hz, 2F) ppm;

IR (Neat): υ = 3403, 3115, 3053, 2920, 2854, 1313, 1290, 1051, 1027, 779, 744, 515, 483 cm⁻ 1;

HRMS (ESI, M-H⁺) for C₁₀H₈F₂NS Calcd: 212.0351; Found: 212.0350.

3-((Difluoromethyl)thio)-2-phenyl-1*H***-indole (5b**, 22.0 mg, 80%) was purified by preparative TLC as white solid.^{2e}

R_f = 0.68 (PE : EtOAc = 3 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 8.55 (bs, 1H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.84-7.82 (m, 2H), 7.56-7.53 (m, 2H), 7.50-7.43 (m, 2H), 7.35-7.20 (m, 2H), 6.74 (t, *J* = 57.4 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 143.3, 135.5, 131.7, 131.0, 129.0, 128.8, 128.7, 123.6, 121.6, 121.5 (t, *J* = 276.2 Hz), 119.8, 112.0, 93.8 (t, *J* = 3.6 Hz);

¹⁹**F NMR** (470 MHz, CDCl₃) δ -91.44 (d, *J* = 57.5 Hz, 2F) ppm;

IR (Neat) υ = 3672, 3198, 3186, 3097, 1499, 1483, 1329, 1282, 1261, 1216, 917, 800, 795, 780, 649, 619 cm⁻¹;

HRMS (ESI, M-H⁺) for C₁₅H₁₀OF₂NS Calcd: 274.0508; Found: 274.0512;

Melting point 89.6-90.4 °C.

3-((Difluoromethyl)thio)-1*H***-indol-5-ol (6b**, 19.0 mg, 88%) was purified by preparative TLC as brownish oil.

 $R_f = 0.17$ (Hex : Ether = 3 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 8.46 (bs, 1H), 7.44 (d, *J* = 2.8 Hz, 1H), 7.28 (d, *J* = 8.7 Hz, 1H), 7.20 (d, *J* = 2.2 Hz, 1H), 6.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.68 (t, *J* = 57.7 Hz, 1H), 5.02 (bs, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 150.8, 132.8, 131.2, 130.8, 121.1 (t, *J* = 276.1 Hz), 113.1, 112.5, 103.7, 95.7 (t, *J* = 3.7 Hz);

¹⁹F NMR (470 MHz, CDCl₃) δ -91.97 (d, J = 58.0 Hz, 2F) ppm;
IR (Neat): υ = 3707, 3679, 3184, 3159, 1678, 1618, 1493, 1444, 1378, 1347, 1285, 1274, 1220, 1175, 1168, 1023, 1014, 987, 949, 886, 822, 812, 731, 650, 558, 286 cm⁻¹;
HRMS (ESI, M-H⁺) for C₉H₆ONF₂S Calcd: 214.0415; Found: 214.0148.

3-((Difluoromethyl)thio)-4-methoxy-1*H***-indole (7b**, 22.0 mg, 98%) was purified by flash colum chromatography as colorless oil.^{2e}

 $R_f = 0.60 (PE : EtOAc = 3 : 1);$

¹**H NMR** (500 MHz, CDCl₃) δ 8.45 (bs, 1H), 7.32 (d, *J* = 2.6 Hz, 1H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.98 (t, *J* = 58.7 Hz, 1H), 6.65 (d, *J* = 7.9 Hz, 1H), 4.00 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 154.3, 138.2, 130.4, 124.2, 122.4 (t, *J* = 274.2 Hz), 118.2, 105.0, 101.5, 96.7 (t, *J* = 4.8 Hz), 55.5;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -95.25 (d, *J* = 59.1 Hz, 2F) ppm;

IR (Neat) υ = 3680, 3192, 3084, 3013, 1620, 1550m, 1537, 1308, 1287, 1267, 1099, 1093, 1024, 1010, 993, 810, 759, 740, 573 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₀H₁₀OF₂NS Calcd: 230.0446; Found: 230.0447.

3-((Difluoromethyl)thio)-5-methoxy-1-methyl-1*H***-indole** (**8b**, 19.0 mg, 78%) was purified by preparative TLC as brownish oil.

R_f = 0.70 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 8.23 (bs, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.18 (d, *J* = 2.5 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.64 (t, *J* = 57.5 Hz, 1H), 3.91 (s, 3H), 2.55 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 155.3, 143.2, 131.7, 129.9, 121.3 (t, *J* = 276.7 Hz), 122.4, 111.5, 100.6, 93.2 (t, *J* = 3.7 Hz), 55.9, 12.2;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -91.89 (d, *J* = 57.6 Hz, 2F) ppm;

IR (KBr) υ = 3385, 3005, 2964, 2950, 2833, 1627, 1590, 1536, 1486, 1406, 1390, 1309, 1205, 1165, 1125, 1080, 1014, 957, 840, 809, 745, 628, 596, 569, 543 cm⁻¹;
 HRMS (ESI, M-H⁺) for C₁₁H₁₀ONF₂S Calcd: 242.0457; Found: 242.0462.

6-Chloro-3-((difluoromethyl)thio)-1*H***-indole (9b**, 22.0 mg, 94%) was purified by flash colum chromatography as colorless oil.^{2e}

 $R_f = 0.65 (PE : EtOAc = 3 : 1);$

¹**H NMR** (500 MHz, CDCl₃) δ 8.50 (bs, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 2.5 Hz, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 7.25 (dd, *J* = 8.7, 1.7 Hz, 1H), 6.70 (t, *J* = 57.3 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 136.4, 132.4, 129.3, 128.4, 122.2, 120.7 (t, *J* = 275.7 Hz), 120.4, 111.6, 97.1 (t, *J* = 3.8 Hz);

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.03 (d, J = 57.8 Hz, 2F) ppm;

IR (Neat) v = 3675, 3155, 1284, 1125, 1033, 1009, 985, 913, 842, 732, 589 cm⁻¹;

HRMS (ESI, M-H⁺) for C₉H₅ClF₂NS Calcd: 231.9805; Found: 231.9800.

5-Bromo-3-((difluoromethyl)thio)-1*H***-indole (10b**, 22.0 mg, 80%) was purified by preparative TLC as brownish oil.^{2e}

 $R_f = 0.30 (PE : EtOAc = 5 : 1);$

¹**H NMR** (500 MHz, CDCl₃) δ 8.54 (bs, 1H), 7.94 (d, *J* = 1.3 Hz, 1H), 7.49 (d, *J* = 2.7 Hz, 1H), 7.39 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 1H), 6.70 (t, *J* = 57.3 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 134.8, 133.0, 131.6, 126.3, 122.1, 120.5 (t, *J* = 276.4 Hz), 114.9, 113.1, 96.4 (t, *J* = 3.6 Hz);

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.13 (d, J = 57.2 Hz, 2F) ppm;

IR (KBr) υ = 3450, 3153, 3072, 2972, 1871, 1749, 1693, 1651, 1600, 1562, 1505, 1446, 1405, 1320, 1287, 1260, 1208, 1069, 1014, 876, 776, 747, 692, 585, 571, 526 cm⁻¹;

3-((Difluoromethyl)thio)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H***-indole** (**11b**, Method **A**: 31.0 mg, 95%; Method **B**: 30.0 mg, 92%) was purified by preparative TLC as colorless oil.

 $R_{f} = 0.70$ (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 8.64 (bs, 1H), 8.33 (s, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.47 (d, *J* = 2.5 Hz, 1H), 7.41 (d, *J* = 8.3, 1H), 6.71 (t, *J* = 57.8 Hz, 1H), 1.41 (s, 12H);

¹³C NMR (125 MHz, CDCl₃) δ 138.2, 132.0, 129.3, 126.8, 120.8 (t, *J* = 275.1 Hz), 111.1, 97.3 (t, *J* = 4.0), 83.8, 24.9;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.51 (d, *J* = 58.7 Hz, 2F);

¹¹**B NMR** (160 MHz, CDCl₃) δ 31.46 ppm;

IR (Neat) v = 3398, 3300, 2977, 2927, 1614, 1351, 1305, 1252, 1137, 1100, 1064, 1030, 962, 906, 855, 810, 748, 687, 480, 422 cm⁻¹;

HRMS (ESI, M+Na⁺) for C₁₅H₁₈BF₂NNaO₂S Calcd: 348.1012; Found: 348.1013.

Methyl 3-((difluoromethyl)thio)-1*H***-indole-5-carboxylate (12b**, 16.3 mg, 63%) was purified by flash colum chromatography as colorless oil.^{2e}

 $R_f = 0.30 (PE : EtOAc = 3 : 1);$

¹**H NMR** (500 MHz, CDCl₃) δ 8.77 (bs, 1H), 8.56 (s, 1H), 8.02 (dd, *J* = 8.7, 1.6 Hz, 1H), 7.58 (d, *J* = 2.7 Hz, 1H), 7.47 (dd, *J* = 8.7, 0.4 Hz, 1H), 6.73 (t, *J* = 57.4 Hz, 1H), 3.99 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 167.8, 138.7, 133.2, 129.4, 124.6, 123.6, 122.2, 120.4 (t, *J* = 277.6 Hz), 111.5, 98.3, 52.1;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.03 (d, *J* = 57.8 Hz, 2F) ppm;

IR (KBr) υ = 3276, 3120, 3000, 2951, 2842, 1686, 1617, 1434, 1321, 1291, 1263, 1190, 1142, 1093, 1064, 1038, 1006, 981, 900, 825, 770, 757, 702, 621, 570, 530 cm⁻¹;
 HRMS (ESI, M+Na⁺) for C₁₁H₉F₂NNaO₂S Calcd: 280.0214; Found: 280.0204.

MeO₂C SCF₂H

Methyl 1-((difluoromethyl)thio)-1*H***-indole-5-carboxylate** (**12b**', 5.6 mg, 20%) was purified by flash colum chromatography as colorless oil.

R_f = 0.73 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, Acetone-d₆) δ 8.36 (d, *J* = 1.5 Hz, 1H), 8.00 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.72 (d, *J* = 8.7, 1H), 7.44 (d, *J* = 3.5 Hz, 2H), 7.43 (t, *J* = 54.1 Hz, 1H), 3.91 (s, 3H);

¹³**C NMR** (125 MHz, Acetone-d₆) δ 166.8, 143.9, 136.8, 129.5, 124.3, 123.9, 123.4, 121.1 (t, *J* = 277.2 Hz), 111.1, 107.1, 51.3;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -98.65 (d, *J* = 55.1 Hz, 2F) ppm;

IR (Neat) υ = 3130, 3050, 1670, 1648, 1604, 1481, 1480, 1310, 1276, 1270, 1210, 1200, 1180, 1165, 1100, 1031, 1010, 1000, 994, 984, 762, 725 cm⁻¹;

HRMS (ESI, M+Na⁺) for C₁₁H₉F₂NNaO₂S Calcd: 280.0214; Found: 280.0227.

2-((Difluoromethyl)thio)-1-phenyl-1*H***-pyrrole** (**13b**, 15.8 mg, 70%) was purified by flash colum chromatography as brownish oil.

R_f = 0.87 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 7.51-7.42 (m, 3H), 7.36-7.34 (m, 2H), 7.12 (dd, *J* = 3.1, 1.8 Hz, 1H), 6.78 (dd, *J* = 3.9, 1.8 Hz, 1H), 6.46 (t, *J* = 57.4 Hz, 1H), 6.39 (t, *J* = 3.3, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 128.9, 127.9, 127.8, 122.5, 120.3, 118.1 (t, *J* = 278.1 Hz), 112.1, 109.8;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -99.21 (d, J = 57.5 Hz, 2F) ppm;

IR (Neat) v = 3201, 3191, 1643, 1546, 1466, 1354, 1282, 1029, 1025, 996, 980, 800, 758, 729, 725 cm⁻¹;

HRMS (APCI, M+H⁺) for C₁₁H₁₀F₂NS Calcd: 226.0497; Found: 226.0493.

4-CF₃-C₆H₅

2-((Difluoromethyl)thio)-1-(4-(trifluoromethyl)benzyl)-1*H***-pyrrole** (**15b**, 20.3 mg, 66%) was purified by flash colum chromatography as colorless oil.

R_f = 0.80 (Hex : Ether = 95 : 5);

¹**H NMR** (500 MHz, CDCl₃) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.85 (dd, *J* = 2.8, 1.8 Hz, 1H), 6.69 (dd, *J* = 3.8, 1.8 Hz, 1H), 6.49 (t, *J* = 57.3 Hz, 1H), 6.32 (t, *J* = 3.3 Hz, 1H), 5.35 (s, 2H);

¹³C NMR (125 MHz, CDCl₃) δ 141.9, 130.0 (q, J = 32.3 Hz), 127.0, 126.8, 125.7 (q, J = 3.7 Hz), 122.7, 122.0, 120.5 (t, J = 278.2 Hz), 111.4 (t, J = 3.9 Hz), 110.0, 50.1;

¹⁹**F NMR** (470 MHz, CDCl₃, spectrum centered at 77.00 ppm) δ -62.60 (s, 3F), -92.74 (d, J = 57.6 Hz, 2F) ppm;

IR (Neat) υ = 3166, 3150, 3050, 1660, 1459, 1326, 1321, 1296, 1088, 1072, 1037, 1021, 981, 976, 846, 756, 688 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₃H₁₁F₅NS Calcd: 308.0527; Found: 308.0526.

2-((Difluoromethyl)thio)-*N*,*N*-**dimethyl-1***H*-**pyrrol-1-amine** (**16b**, 65% GC yield) was purified by preparative TLC as brownish oil.

R_f = 0.70 (Pure DCM);

¹**H NMR** (500 MHz, CD₃OD) δ 7.25 (dd, *J* = 1.9, 3.1 Hz, 1H), 6.71 (t, *J* = 57.6 Hz, 1H), 6.23 (dd, *J* = 4.0, 1.8 Hz, 1H), 6.09 (t, *J* = 3.6 Hz, 1H), 3.57 (s, 6H);

¹³C NMR (125 MHz, CD₃OD) δ 123.0, 118.6 (t, *J* = 277.5 Hz), 110.7 (t, *J* = 4.1 Hz), 107.7, 105.4, 66.7;

¹⁹**F NMR** (470 MHz, CD₃OD) δ -95.29 (d, *J* = 57.7 Hz, 2F) ppm;

HRMS (ESI, M+H⁺) for C₇H₁₁F₂N₂S Calcd: 193.0533; Found: 193.0607.

Tert-butyl ((2-((difluoromethyl)thio)-1*H*-pyrrol-1-yl)methyl) carbonate (17b, 11.0 mg, 36%), was purified by flash colum chromatography as colorless oil.

R_f = 0.45 (Hex : Ether = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 6.96-6.95 (m, 1H), 6.59-6.58 (m, 1H), 6.58 (t, *J* =57.5 Hz, 1H), 6.24 (t, *J* = 3.4 Hz, 1H), 4.20 (t, *J* = 7.3 Hz, 2H), 4.06 (t, *J* = 6.2 Hz, 2H), 2.11 (quint, *J* = 7.0 Hz, 2H), 1.52 (s, 9H);

¹³C NMR (125 MHz, CDCl₃) δ 153.4, 126.2, 121.4, 120.9 (t, J = 278.0 Hz), 110.6, 109.3, 82.3, 63.7, 43.6, 30.5, 27.8;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.64 (d, *J* = 57.8 Hz) ppm;

IR (Neat) υ = 3109, 3046, 1703, 1308, 1282, 1248, 1163, 1057, 1033, 1025, 1006, 978, 756, 731, 725, 537 cm⁻¹;

HRMS (ESI, M+Na⁺) for C₁₃H₁₉F₂NNaO₃S Calcd: 330.0946; Found: 330.0943.

2-((Difluoromethyl)thio)-1-(hex-5-en-1-yl)-1*H***-pyrrole** (**18b**, 70% GC yield) was purified by flash colum chromatography as a brownish oil.

¹H NMR (500 MHz, CDCl₃) δ 6.85 (t, J = 2.2 Hz, 1H), 6.49-6.48 (m, 1H), 6.47 (t, J = 57.4 Hz, 1H), 6.14 (t, J = 6.1 Hz, 1H), 5.75-5.67 (m, 1H), 4.96-4.89 (m, 2H), 3.98 (t, J = 7.4 Hz, 2H), 2.02 (td, J= 7.2, 3.6 Hz, 2H), 1.69 (quint, J = 7.6 Hz, 2H), 1.33 (quint, J = 7.5 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -92.60 (d, J = 57.6 Hz, 2F) ppm;

IR (Neat) υ = 3205, 3105, 3055, 3045, 3014, 2999, 2989, 1475, 1308, 1300, 1019, 978, 978,

753, 687, 647 cm⁻¹;

MS (EI) for $C_{11}H_{15}F_2NS$ Calcd: 213.3; Found: 213.3.

3-((Difluoromethyl)thio)-1-methyl-1*H***-pyrrolo[2,3-***b***]pyridine** (**19b**, 15 mg, 70%) was purified by flash colum chromatography as a colorless oil.

R_f = 0.30 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 8.44 (dd, *J* = 4.7, 1.4 Hz, 1H), 8.08 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.50 (s, 1H), 7.22 (dd, *J* = 7.9, 4.7 Hz, 1H), 6.68 (t, *J* = 57.3 Hz, 1H), 3.96 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 148.0, 144.0, 136.4, 127.9, 123.0, 120.5 (t, *J* = 276.1 Hz), 117.0, 92.9, 31.6;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.20 (d, *J* = 56.5 Hz, 2F) ppm;

IR (Neat) v = 2952, 2919, 2851, 1515, 1405, 1298, 1116, 1015, 971, 793, 771, 739, 620, 556, 544 cm⁻¹;

HRMS (ESI, M+H⁺) for C₉H₉F₂N₂S Calcd: 215.0449; Found: 215.0439.

4-((Difluoromethyl)thio)-1-methyl-3-phenyl-1*H***-pyrazol-5-amine** (**20b**, Method **A**: 23.0mg, 90%; Method **B**: 15.4 mg, 60%) was purified by preparative TLC as brownish oil.^{2b}

R_f = 0.30 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.3 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 6.54 (t, *J* = 57.4 Hz, 1H), 4.12 (bs, 2H), 3.77 (s, 3H);

¹³**C NMR** (125 MHz, CDCl₃) δ 152.2, 150.4, 132.4, 128.3, 127.7, 121.1 (t, *J* = 277.1 Hz), 80.4 (t, *J* = 4.0 Hz), 35.2;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.27 (d, *J* = 57.0 Hz, 2F) ppm;

IR (Neat) v = 3359, 3301, 3181, 3060, 2954, 2922, 2852, 1626, 1560, 1503, 1452, 1312, 1291, 1242, 1071, 1027, 772, 744, 719, 690 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₁H₁₂F₂N₃S Calcd: 256.0715; Found: 256.0713.

3-(*Tert*-butyl)-4-((difluoromethyl)thio)isoxazol-5-amine (**21b**, 18.2 mg, 82%) was purified by preparative TLC as yellowish oil.^{2b} **R**_f = 0.70 (PE : EtOAc = 5 : 1); ¹H NMR (500 MHz, CDCl₃) δ 6.56 (t, *J* = 57.4 Hz, 1H), 5.07 (bs, 2H), 1.41 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 171.8, 121.6 (t, *J* = 277.5 Hz), 71.5 (t, *J* = 4.2 Hz), 33.6, 28.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -90.83 (d, *J* = 57.6 Hz, 2F) ppm; **IR** (Neat) *v* = 3457, 3287, 3229, 3156, 3122, 2972, 2874, 1637, 1572, 1479, 1289, 1209, 1043, 863, 794, 746, 617, 585, 520, 458, 437 cm⁻¹; **HRMS (ESI, M+H⁺)** for C₈H₁₃F₂N₂OS Calcd: 223.0711; Found: 223.0702.

2-Amino-3-((difluoromethyl)thio)-4*H***-chromen-4-one (22b**, 17.0 mg, 70%) was purified by preparative TLC as an off-white solid.^{2b}

 $R_{f} = 0.35$ (Hex : EtOAc = 6 : 4);

¹**H NMR** (500 MHz, CD₃OD) δ 7.97-7.95 (m, 1H), 7.59-7.55 (m, 1H), 7.32-7.29 (m, 2H), 6.76 (t, *J* = 57.8 Hz, 1H);

¹³C NMR (125 MHz, CD₃OD) δ 175.7, 168.4, 153.0, 133.2, 125.3, 125.0, 121.5, 120.7 (t, J = 276.1 Hz), 116.3, 81.0 (t, J = 3.2 Hz);

¹⁹**F NMR** (470 MHz, CD₃OD) δ -95.03 (d, *J* = 57.9 Hz, 2F) ppm;

IR (Neat) v = 3744, 3605, 1684, 1653, 1638, 1584, 1421, 1031, 1007, 997, 787, 709, 558 cm⁻¹; HRMS (ESI, M-H⁺) for C₁₀H₆F₂NO₂S Calcd: 242.0093; Found: 242.0089; Melting point 199.0-200.9 °C.

HF₂CS O O **5-((Difluoromethyl)thio)-2,3-dihydrothieno[3,4-***b***][1,4]dioxine (23b, 40% GC yield) was purified by preparative TLC as a brownish oil.**

R_f = 0.73 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 6.70 (t, *J* = 57.3 Hz, 1H), 6.61 (s, 1H), 4.34-4.32 (m, 2H), 4.25-4.23 (m, 2H);

¹³C NMR (125 MHz, CDCl₃) δ 146.4, 141.5, 120.1 (t, *J* = 278.8 Hz), 65.2, 64.2;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -93.1 (d, *J* = 56.3 Hz, 2F) ppm;

IR (Neat) v = 3136, 3055, 3041, 1531, 1512, 1428, 1383, 1282, 1198, 1150, 1056, 1041, 1029, 1003, 934, 905, 891, 768, 763, 734, 713 cm⁻¹;

HRMS (APCI, M+H⁺) for C₇H₇O₂F₂S₂ Calcd: 224.9850; Found: 224.9860.

(Difluoromethyl)(2,4,6-trimethoxyphenyl)sulfane (24b, 19 mg, 75%) was purified by flash colum chromatography as white solid.^{2e}

R_f = 0.33 (PE : EtOAc = 8 : 1);

¹H NMR (500 MHz, CDCl₃) δ 6.80 (t, *J* = 58.5 Hz, 1H), 6.19 (s, 2H), 3.90 (s, 6H), 3.86 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 163.4, 162.4, 120.9 (t, J = 276.5 Hz), 93.7 9 (t, J = 3.7 Hz), 91.2, 56.3, 55.5;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -93.18 (d, J = 58.8 Hz, 2F) ppm;

HRMS (ESI, M+Na⁺) for C₁₀H₁₂F₂NaO₃S Calcd: 273.0367; Found: 273.0366;

IR (Neat) v = 3008, 2922, 2850, 1579, 1454, 1439, 1410, 1336, 1297, 1227, 1208, 1191, 1184, 1163, 1119, 1090, 1057, 1042, 1007, 952, 913, 813, 795, 678, 660, 637, 613, 595, 570, 517, 479, 404 cm⁻¹;

Melting point 82.5-84.4 °C.

OH SCF₂H OMe MeO

2-((Difluoromethyl)thio)-3,5-dimethoxyphenol (**25b**, 15.5 mg, 66%) was purified by flash colum chromatography as brownish oil.

 $R_{f} = 0.70$ (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 6.68 (s, 1H), 6.63 (t, *J* = 57.9 Hz, 1H), 6.27 (d, *J* = 2.5 Hz, 1H), 6.12 (d, *J* = 2.4 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 164.2, 161.9, 160.3, 126.8 (t, J = 278.3 Hz), 92.6, 92.1, 90.0 (t, J = 3.2 Hz), 56.2, 55.5;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -92.45 (d, *J* = 57.8 Hz, 2F) ppm;

IR (Neat) v = 3426, 3008, 2953, 2852, 1601, 1576, 1480, 1469, 1435, 1369, 1435, 1369, 1306, 1285, 1213, 1201, 1176, 1141, 1104, 1088, 1064, 1052, 1031, 981, 928, 814, 791, 719, 659, 641, 614, 565, 553, 531, 470, 418 cm⁻¹;

HRMS (ESI, M-H⁺) for C₉H₉F₂O₃S Calcd: 235.0246; Found: 235.0250.

4-((Difluoromethyl)thio)-5-methoxybenzene-1,3-diol (**26b**, 40%, 8.8 mg) was purified by preparative TLC as colorless oil.

R_f = 0.70 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 6.74 (s, 1H), 6.63 (t, *J* = 57.9 Hz, 1H), 6.19 (d, *J* = 2.5 Hz, 1H), 6.08 (d, *J* = 2.4 Hz, 1H), 5.15 (bs, 1H), 3.88 (s, 3H);

¹³C NMR (125 MHz, Acetone-d₆) δ 162.6, 161.7, 161.6, 160.8, 121.2 (t, *J* = 274.5 Hz), 95.5, 92.0, 55.5;

¹⁹**F NMR** (470 MHz, Acetone-d₆) δ -94.4 (d, *J* = 57.8 Hz, 2F) ppm;

IR (Neat) *v* = 3703, 3599, 3159, 3093, 3019, 1650, 1632, 1540, 1512, 1507, 1482, 1389, 1266, 1233, 1200, 1194, 1169, 1096, 1070, 1029, 1020, 996, 931, 823, 748, 714, 654, 534, 391 cm⁻¹; **HRMS (ESI, M-H⁺)** for C₈H₇O₃F₂S Calcd: 221.0089; Found: 221.0087.

2-((Difluoromethyl)thio)-5-methylbenzene-1,3-diol (27b, 14.0 mg, 68%) was purified by preparative TLC as an off-white oil.

 $R_f = 0.60$ (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 6.62 (bs, 1H), 6.61 (t, *J* = 56.7 Hz, 1H), 6.42 (s, 2H), 5.12 (bs, 1H), 3.47 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 159.8, 159.1, 146.6, 120.3 (t, *J* = 278.0 Hz), 110.5, 101.0 (t, *J* = 5.3 Hz), 100.1, 21.7;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -91.15 (d, *J* = 58.3 Hz, 2F) ppm;

IR (Neat) v = 3654, 3627, 3106, 3078, 3017, 1660, 1606, 1530, 1287, 1179, 1034, 990, 489, 421 cm⁻¹;

HRMS (ESI, M-H⁺) for C₈H₇O₂F₂S Calcd: 205.0140; Found: 205.0137.

4-((Difluoromethyl)thio)-3,5-dimethoxy-*N***,***N***-dimethylaniline** (**28b**, 21.3 mg, 81%) was purified by preparative TLC as brownish oil.

R_f = 0.35 (Hex : EtOAc = 8 : 2);

¹H NMR (500 MHz, CDCl₃) δ 6.74 (t, *J* = 58.8 Hz, 1H), 5.92 (s, 2H), 3.90 (s, 6H), 3.05 (s, 6H);

¹³C NMR (125 MHz, CDCl₃) δ 162.4, 153.5, 128.3, 121.3 (t, *J* = 275.7 Hz), 89.0, 56.1, 40.4;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -93.42 (d, *J* = 58.7 Hz, 2F) ppm;

IR (Neat) υ = 730, 977, 1021, 1058, 1086, 1276, 1284, 1398, 1572, 1578, 1639, 2983, 2991, 3019, 3033, 3132 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₁H₁₆F₂NO₂S Calcd: 264.0864; Found: 264.0853;

Melting point 107.9-109.2 °C.

(Difluoromethyl)(2,6-dimethoxy-4-(methylthio)phenyl)sulfane (29b, 19.4 mg, 73%) was purified by preparative TLC as an off-white solid.

R_f = 0.40 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, Acetone-d₆) δ 6.96 (t, *J* = 58.4 Hz, 1H), 6.49 (d, *J* = 2.4 Hz, 1H), 6.44 (d, *J* = 2.4 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.47 (s, 3H);

¹³C NMR (125 MHz, Acetone-d₆) δ 162.9, 162.2, 149.7, 129.3, 120.9 (t, *J* = 277.1 Hz), 102.4, 94.7, 56.3, 55.5, 15.7;

¹⁹**F NMR** (470 MHz, Acetone-d₆) δ -92.54 (d, *J* = 58.3 Hz, 2F) ppm;

IR (Neat) υ = 3293, 3273, 3192, 3189, 1621, 1600, 1343, 1254, 1207, 1173, 1153, 1149, 1106, 1074, 978, 832 cm⁻¹;

HRMS (APCI, M+H⁺) for C₁₀H₁₃O₂F₂S₂ Calcd: 267.0320; Found: 267.0330;

Melting point 107.9-109.9 °C.

3-((Difluoromethyl)sulfinyl)-1-methyl-1*H***-indole** (**1b***''*, 16.0 mg, 70%) was purified by preparative TLC as an off-white solid.

 $R_{f} = 0.50 (PE : EtOAc = 8 : 2);$

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.40 (td, *J* = 7.0, 1.1 Hz, 1H), 7.31 (td, *J* = 8.0, 1.1 Hz, 1H), 6.53 (t, *J* = 56.0 Hz, 1H), 3.90 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 137.8, 133.0, 125.1, 124.0, 122.3, 120.0, 119.9 (t, *J* = 286.0 Hz), 110.6, 108.2 (dd, J = 5.9, 3.5 Hz), 33.7;

¹⁹F NMR (470 MHz, CDCl₃) δ -117.83 (dd, J = 261.3, 55.5 Hz, 1F), -119.4 (dd, J = 261.3, 56.2 Hz, 1F) ppm;

IR (Neat) v = 3196, 3182, 3087, 3026, 1548, 1504, 1481, 1291, 1225, 1160, 1057, 1021, 780, 737, 640 cm⁻¹;

HRMS (ESI, M+H⁺) for C₁₀H₁₀ONF₂S Calcd: 230.0446; Found: 230.0447.

3-((Difluoromethyl)sulfonyl)-1-methyl-1*H***-indole** (**1b**', 20.8 mg, 85%) was purified by preparative TLC as an off-white solid.

 $R_{f} = 0.40 (PE : EtOAc = 7 : 3);$

¹**H NMR** (500 MHz, CD₃OD) δ 8.10 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.42 (td, *J* = 7.2, 1.1 Hz, 1H), 7.34 (td, *J* = 8.1, 0.9 Hz, 1H), 6.62 (t, *J* = 53.5 Hz, 1H), 3.98 (s, 3H); ¹³**C NMR** (125 MHz, CD₃OD) δ 138.2, 137.7, 125.4, 123.7, 122.7, 119.3, 115.2 (t, *J* = 281.1 Hz), 110.7, 104.0, 32.7;

¹⁹**F NMR** (470 MHz, CD₃OD) δ -126.65 (d, *J* = 54.0 Hz, 2F) ppm;

HRMS (ESI, M+Na⁺) for C₁₀H₉F₂NNaO₂S Calcd: 268.0222; Found: 268.0214;

IR (Neat) v = 3280, 3199, 3186, 3096, 3032, 1559, 1548, 1528, 1525, 1481, 1409, 1342, 1292, 1213, 1210, 1197, 1161, 1138, 1075, 1068, 1054, 1041, 1040, 878, 784, 783, 766, 727, 518, 449, 429, 404 cm⁻¹;

Melting point 109.0-109.2 °C.

Phenyl(2,4,6-trimethoxyphenyl)sulfane (**30b**, 11 mg, 40%) was purified by preparative TLC as off-white solid.

R_f = 0.70 (Hex : EtOAc = 8 : 2);

¹**H NMR** (500 MHz, CDCl₃) δ 7.19-7.16 (m, 2H), 7.07-7.04 (m, 3H), 6.24 (s, 2H), 3.90 (s, 3H), 3.83 (s, 6H);

¹³C NMR (125 MHz, CDCl₃) δ 162.9, 162.6, 138.7, 128.5, 125.6 124.4, 98.7, 91.2, 56.3, 55.4 ppm;

HRMS (ESI, M+Na⁺) for C₁₅H₁₆NaO₃S Calcd: 299.0712; Found: 299.0703;

IR (Neat) v = 3204, 3187, 3172, 3153, 3148, 3099, 3080, 3016, 3010, 1627, 1607, 1540, 1538, 1525, 1473, 1441, 1351, 1317, 1244, 1211, 1204, 1176, 1099, 1092, 1081, 1052, 1048, 1003, 857, 786, 725, 527 cm⁻¹;

Melting point 120.0-121.1 °C.

Naphthalen-1-yl(2,4,6-trimethoxyphenyl)sulfane (**31b**, 19.2 mg, 59%) was purified by preparative TLC as an off-white solid.

R_f = 0.70 (Hex : EtOAc = 8 : 2);

¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.60-7.38 (m, 3H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.87 (dd, *J* = 7.3, 0.7 Hz, 1H), 6.28 (s, 2H), 3.91 (s, 3H), 3.81 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 163.1, 162.7, 135.8, 133.7, 131.1 128.3, 125.9, 125.7, 125.6, 124.9, 124.6, 122.4, 98.2, 91.4, 56.3, 55.5 ppm; HRMS (APCI, M+H⁺) for C₁₉H₁₉O₃S Calcd: 327.1049; Found: 327.1048; IR (Neat) υ = 3190, 3184, 3096, 3085, 3079, 3017, 3011, 3009, 1629, 1597, 1539, 1464, 1431, 1336, 1234, 1207, 1165, 1086, 1059, 1043, 992, 866, 835, 809 cm⁻¹;

Melting point 113.2-118.3 °C.

The preparation of **33b** is described as below.

To a flame-dried Schlenk tube (25.0 mL) equipped with a rubber septum stopper and a tefloncoated magnetic stirring bar were added 5-iodo-1-(4-iodobenzyl)-1*H*-indole **33a** (2.0 mmol, 1.0 equiv) and *S*-(difluoromethyl) benzenesulfonothioate **PhSO₂SCF₂H** (4.0 mmol, 2.0 equiv). The resulting mixture was evacuated and back-filled with ultra-purified argon (>99.999%). Shortly after, **TBAI** (0.40 mmol, 20 mol%) in 10.0 mL dry CH₃CN was added to the reaction tube with counter argon flow and the rubber septum was replaced immediately by J.Young high-vacuum PTFE valve. The reaction was stirred at room temperature under irradiation by using compact fluorescent lamps (CFL, 3*40W) until the starting material was completely consumed as monitored by GC-MS. It took around 48 hours. This procedure is termed Method **C**.

After complete consumption of the starting material, the reaction mixture was diluted with EtOAc, filtered through a pad of silica gel and the organic solvent was evaporated. The pure desired product was provided after purification by flash column chromatography on silica gel, which furnished the titled compound **33b** as described.

3-((Difluoromethyl)thio)-5-iodo-1-(4-iodobenzyl)-1*H***-indole** (**33b**, Method **C**: 0.64 g, 60%) was purified by column chromatography as an off-white solid.

 $R_f = 0.66$ (Hex : DCM = 1 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 8.14 (d, *J* = 1.2 Hz, 1H), 7.68 (d, *J* = 8.31 Hz, 2H), 7.52 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.35 (s, 1H), 7.05 (d, *J* = 8.7 Hz, 1H), 6.86 (d, *J* = 8.3 Hz, 2H), 6.68 (t, *J* = 57.3 Hz, 1H), 5.27 (s, 2H);

¹³C NMR (125 MHz, CDCl₃) δ 138.2, 136.0, 135.8, 135.5, 133.1, 131.6, 129.7, 128.7, 120.3 (t, J = 276.3 Hz), 112.1, 94.9, 93.8, 85.2, 50.2;

¹⁹**F NMR** (470 MHz, CD₃OD) δ -92.24 (d, *J* = 56.6 Hz, 2F) ppm;

IR (Neat): υ = 3124, 3012, 2973, 2927, 2838, 2303, 2196, 2014, 1737, 1650, 1580, 1501, 1483, 1457, 1435, 1401, 1382, 1337, 1306, 1265, 1253, 1228, 1198, 1161, 1115, 1099, 1068, 1029, 1005, 979, 964, 951, 936, 871, 811, 796, 783, 769, 753, 739, 688, 664, 639, 626, 617, 588, 532, 469, 430, 422 cm⁻¹;

HRMS (APCI, M+H⁺) for for C₁₆H₁₂NF₂I₂S Calcd: 541.8742; Found: 541.8729; Melting point 124.8-126.3 °C.

Diethyl3-(((difluoromethyl)thio)methyl)-4-((phenylsulfonyl)methyl)cyclopentane-1,1-dicarboxylate(34b, 23.2 mg, 50%) was purified by column chromatography as colorless oil.3 $R_f = 0.30$ (PE : EtOAc = 5 : 1);

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.7 Hz, 2H), 6.80 (t, *J* = 56.1 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 4H), 3.16 (dq, *J* = 14.0, 5.5 Hz, 2H), 2.87 (dd, *J* = 12.8, 5.8 Hz, 1H), 2.71-2.55 (m, 3H), 2.51-2.42 (m, 2H), 2.34-2.26 (m, 2H), 1.26 (td, *J* = 7.1, 2.5 Hz, 6H);

¹³C NMR (125 MHz, CDCl₃) δ 172.3, 171.8, 139.4, 134.0, 129.5, 128.0, 120.4 (t, J = 273.1 Hz),
62.0, 61.8, 58.2, 55.7, 42.2, 38.0, 37.9, 36.7, 26.8, 14.0;

¹⁹**F NMR** (470 MHz, CD₃OD) δ -92.43 (d, *J* = 56.1 Hz, 2F) ppm;

IR (KBr): υ = 2985, 1730, 1445, 1369, 1270, 1183, 1180, 1150, 1086, 1065, 1030, 861, 779, 748, 690, 565 cm⁻¹;

HRMS (ESI, M+Na⁺) for for C₂₀H₂₆F₂NaO₆S₂ Calcd: 487.1031; Found: 487.1022.

5. NMR spectra

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1-methyl-1*H*-indole (1b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1*H*-indole (2b)

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1*H*-indole (2b)

¹³C NMR (125 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-methyl-1*H*-indole (4b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-2-phenyl-1*H*-indole (5b)

80 70 60 50 40 30 20 10 0

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)thio)-2-phenyl-1*H*-indole (5b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1*H*-indol-5-ol (6b)

¹³C NMR (125 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1*H*-indol-5-ol (6b)

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1*H*-indol-5-ol (6b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-4-methoxy-1*H*-indole (7b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-methoxy-1-methyl-1*H*-indole (8b)

¹³C NMR (125 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-methoxy-1-methyl-1*H*-indole (8b)

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-methoxy-1-methyl-1*H*-indole (8b)

--91.826 --91.948

¹H NMR (500 MHz, CDCl₃) 5-Chloro-3-((difluoromethyl)thio)-1*H*-indole (9b)

¹³C NMR (125 MHz, CDCl₃) 5-Chloro-3-((difluoromethyl)thio)-1*H*-indole (9b)

¹H NMR (500 MHz, CDCl₃) 5-Bromo-3-((difluoromethyl)thio)-1*H*-indole (10b)

8.54 8.54 7.94 7.49 7.49 7.40 7.38 7.38 7.38 6.70 6.70 6.70

¹⁹F NMR (470 MHz, CDCl₃) 5-Bromo-3-((difluoromethyl)thio)-1*H*-indole (10b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (11b)

¹³C NMR (125 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (11b)

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (11b)

¹¹B NMR (160 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (11b)

¹H NMR (500 MHz, Acetone-d₆ Methyl 1-((difluoromethyl)thio)-1*H*-indole-5-carboxylate (12b')

¹⁹F NMR (470 MHz, CDCl₃) Methyl 1-((difluoromethyl)thio)-1*H*-indole-5-carboxylate (12b')

-98.594
-98.712

¹³C NMR (125 MHz, Acetone-d₆) Methyl 1-((difluoromethyl)thio)-1*H*-indole-5-carboxylate (12b')

¹H NMR (500 MHz, CDCl₃) 2-((Difluoromethyl)thio)-1-phenyl-1*H*-pyrrole (13b)

¹HNMR (500 MHz, CDCl₃) 2-((Difluoromethyl)thio)-(4-(trifluoromethyl)benzyl)-1*H*-pyrrole (15b)

¹³C NMR (125 MHz, CDCl₃) 2-((Difluoromethyl)thio)-(4-(trifluoromethyl)benzyl)-1*H*-pyrrole (15b)

¹⁹F NMR (470 MHz, CDCl₃) 2-((Difluoromethyl)thio)-(4-(trifluoromethyl)benzyl)-1*H*-pyrrole (15b)

--62.602

-92.662

¹HNMR (500 MHz, CD₃OD) 2-((Difluoromethyl)thio)-*N*,*N*-dimethyl-1*H*-pyrrol-1-amine (16b)

¹³CNMR (125 MHz, CD₃OD) 2-((Difluoromethyl)thio)-*N*,*N*-dimethyl-1*H*-pyrrol-1-amine (16b)

¹H NMR (500 MHz, CDCl₃) *Tert*-butyl ((2-((difluoromethyl)thio)-1*H*-pyrrol-1-yl)methyl) carbonate (17b)

¹³C NMR (125 MHz, CDCl₃) *Tert*-butyl ((2-((difluoromethyl)thio)-1*H*-pyrrol-1-yl)methyl) carbonate (17b)

¹⁹F NMR (470 MHz, CDCl3) *Tert*-butyl ((2-((difluoromethyl)thio)-1*H*-pyrrol-1-yl)methyl) carbonate (17b)

¹HNMR (500 MHz, CDCl₃) 2-((Difluoromethyl)thio)-1-(hex-5-en-1-yl)-1*H*-pyrrole (18b)

¹⁹FNMR (470 MHz, CDCl₃) 2-((Difluoromethyl)thio)-1-(hex-5-en-1-yl)-1*H*-pyrrole (18b)

¹H NMR (500 MHz, CDCl₃) 3-((Difluoromethyl)thio)-1-methyl-1*H*-pyrrolo[2,3-*b*]pyridine (19b)

¹HNMR (500 MHz, CDCl₃) 4-((Difluoromethyl)thio)-1-methyl-3-phenyl-1*H*-pyrazol-5-amine (20b)

¹⁹F NMR (470 MHz, CDCl₃) 4-((Difluoromethyl)thio)-1-methyl-3-phenyl-1*H*-pyrazol-5-amine (20b)

¹HNMR (500 MHz, CD₃OD) 2-Amino-3-((difluoromethyl)thio)-4*H*-chromen-4-one (22b)

S61

¹⁹FNMR (470 MHz, CD₃OD) 2-Amino-3-((difluoromethyl)thio)-4*H*-chromen-4-one (22b)

¹³C NMR (125 MHz, CDCl₃) 5-((Difluoromethyl)thio)-2,3-dihydrothieno[3,4-b][1,4]dioxine (23b)

¹⁹F NMR (470 MHz, CDCl₃) (Difluoromethyl)(2,4,6-trimethoxyphenyl)sulfane (24b)

¹HNMR (500 MHz, CDCl₃) 4-((Difluoromethyl)thio)-5-methoxybenzene-1,3-diol (26b)

6.742 6.659 6.651 6.651 6.651 6.651 6.192 6.192 6.187 6.187 6.080 5.158 5.158 3.878

¹⁹F NMR (470 MHz, Acetone-d₆) 4-((Difluoromethyl)thio)-5-methoxybenzene-1,3-diol (26b)

-94.322 -94.445

¹HNMR (500 MHz, CDCl₃) 2-((Difluoromethyl)thio)-5-methylbenzene-1,3-diol (27b)

OMe

¹⁹F NMR (470 MHz, CDCl₃) 4-((Difluoromethyl)thio)-3,5-dimethoxy-*N*,*N*-dimethylaniline (28b)

¹HNMR (500 MHz, Acetone-d₆) (Difluoromethyl)(2,6-dimethoxy-4-(methylthio)phenyl)sulfane (29b)

¹³C NMR (125 MHz, Acetone-d₆) (Difluoromethyl)(2,6-dimethoxy-4-(methylthio)phenyl)sulfane (29b)

¹⁹F NMR (470 MHz, CDCl₃) 3-((Difluoromethyl)sulfinyl)-1-methyl-1*H*-indole (1b")

07426868
1921926198
========

¹HNMR (500 MHz, CD₃OD) 3-((Difluoromethyl)sulfonyl)-1-methyl-1*H*-indole (1b')

¹H NMR (500 MHz, CDCl₃) Naphthalen-1-yl(2,4,6-trimethoxyphenyl)sulfane (31b)

¹H NMR (500 MHz, CDCI₃) 3-((Difluoromethyl)thio)-5-iodo-1-(4-iodobenzyl)-1*H*-indole (33b)

¹³C NMR (125 MHz, CDCl₃) 3-((Difluoromethyl)thio)-5-iodo-1-(4-iodobenzyl)-1*H*-indole (33b)

¹⁹F NMR (470 MHz, CDCI₃) 3-((Difluoromethyl)thio)-5-iodo-1-(4-iodobenzyl)-1*H*-indole (33b)

¹H NMR (500 MHz, CDCl₃) Diethyl 3-(((difluoromethyl)thio)methyl)-4-((phenylsulfonyl)methyl)cyclopentane-1,1-dicarboxylate (34b)

¹³C NMR (125 MHz, CDCl₃) Diethyl 3-(((difluoromethyl)thio)methyl)-4-((phenylsulfonyl)methyl)cyclopentane-1,1-dicarboxylate (34b)

¹⁹F NMR (470 MHz, CDCl₃) Diethyl 3-(((difluoromethyl)thio)methyl)-4 ((phenylsulfonyl)methyl)cyclopentane-1,1-dicarboxylate (34b)

6. References

- 1. C. J. M. Stirling, in *The chemistry of sulphinic acids, esters and their derivatives*, ed. S. Patai, John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1990, ch. 1, pp. 1-7.
- (a) D. Zhu, Y. Gu, L. Lu and Q. Shen, J. Am. Chem. Soc., 2015, 137, 10547-10553; (b) T. Ding, L. Jiang and W. Yi, Org. Lett., 2017, 20, 170-173; (c) Z. Huang, O. Matsubara, S. Jia, E. Tokunaga and N. Shibata, Org. Lett., 2017, 19, 934-937; (d) Q. Yan, L. Q. Jiang, W. B. Yi, Q. R. Liu and W. Zhang, Adv. Synth. Catal., 2017, 359, 2471-2480; (e) X. Zhao, A. Wei, T. Li, Z. Su, J. Chen and K. Lu, Org. Chem. Front., 2017, 4, 232-235.
- 3. D. Zhu, X. Shao, X. Hong, L. Lu and Q. Shen, *Angew. Chem. Int. Ed.*, 2016, **55**, 15807-15811.